• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 51
  • 49
  • 21
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 11
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 731
  • 117
  • 89
  • 87
  • 86
  • 83
  • 75
  • 74
  • 73
  • 67
  • 65
  • 64
  • 64
  • 57
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A MONTE CARLO SIMULATION OF NEAR INFRARED RADIATION TRANSFER IN CLOUDS

Wu, Yi, 1960- January 1986 (has links)
No description available.
162

Improved Approximation Algorithms for Box Contact Representations

Bekos, Michael A., van Dijk, Thomas C., Fink, Martin, Kindermann, Philipp, Kobourov, Stephen, Pupyrev, Sergey, Spoerhase, Joachim, Wolff, Alexander 27 January 2016 (has links)
We study the following geometric representation problem: Given a graph whose vertices correspond to axis-aligned rectangles with fixed dimensions, arrange the rectangles without overlaps in the plane such that two rectangles touch if the graph contains an edge between them. This problem is called Contact Representation of Word Networks (Crown) since it formalizes the geometric problem behind drawing word clouds in which semantically related words are close to each other. Crown is known to be NP-hard, and there are approximation algorithms for certain graph classes for the optimization version, Max-Crown, in which realizing each desired adjacency yields a certain profit. We present the first O(1)-approximation algorithm for the general case, when the input is a complete weighted graph, and for the bipartite case. Since the subgraph of realized adjacencies is necessarily planar, we also consider several planar graph classes (namely stars, trees, outerplanar, and planar graphs), improving upon the known results. For some graph classes, we also describe improvements in the unweighted case, where each adjacency yields the same profit. Finally, we show that the problem is APX-complete on bipartite graphs of bounded maximum degree.
163

Development and evolution of cirrus in a mesoscale model

Lewis, Michael M. 03 1900 (has links)
Cirrus cloud forecasting is of particular importance to various Department of Defense programs. This thesis takes a case study approach to study Air Force Weather Agency Mesoscale Model 5 (AFWA MM5) skill in forecasting cirrus clouds, which are not represented explicitly by the model (ice water mixing ratio is used as a surrogate.) Two cases are selected for study. For each case, an initial forecast time of interest is determined which serves as the beginning point for the case study. GOES data and 3-hourly MM5 data are then obtained at 3- hourly intervals to coincide with model forecast time steps between the initial time through the 30-hour forecast. A standard analysis is performed on all data to determine general atmospheric structure for each case at each 3- hourly point. Following this, the model's relative humidity with respect to ice, explicit ice water content, vertical velocity, and other fields are considered to determine if the model possesses the proper dynamical factors for cirrus formation. Finally, model coverage of ice cloud is compared to the ABL cloud mask results to determine how well the model s ice cloud forecasts verify against each 3-hourly observed ice water field taken from the GOES data. Results indicate that the MM5 underforecasts cirrus coverage, and that the 90% relative humidity field with respect to ice may be a better approximation of observed cirrus coverage than the ice water field.
164

Interstellar C2, CH, and CN in Translucent Molecular Clouds

van Dishoeck, E. F. 12 1900 (has links)
Optical absorption line techniques have been applied to the study of a number of translucent molecular clouds in which the total column densities are large enough that substantial molecular abundances can be maintained. Results are presented for a survey of absorption lines of interstellar C2, CH, and CN. Detections of CN through the A2II -X2E+ (1,0) and (2,0) bands of the red system are reported, and are compared with observations of the blue system for one line of sight. The population distributions in C2 provide diagnostic information on temperature and density. The measured column densities of the three species can be used to test details of the theory of molecule formation in clouds where photo -processes still play a significant role. The C2 and CH column densities are strongly correlated with each other and probably also with the H2 column density. In contrast, the CN column densities are found to vary greatly from cloud to cloud. The observations are discussed with reference to detailed theoretical models.
165

The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments

Seo, Young Min, Youdin, Andrew N. 01 September 2016 (has links)
Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, similar to 10(3) cm(-3), the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.
166

Deuteration of ammonia in the starless core Ophiuchus/H-MM1

Harju, J., Daniel, F., Sipilae, O., Caselli, P., Pineda, J. E., Friesen, R. K., Punanova, A., Guesten, R.;, Wiesenfeld, L., Myers, P. C., Faure, A., Hily-Blant, P., Rist, C., Rosolowsky, E., Schlemmer, S., Shirley, Y. L. 30 March 2017 (has links)
Context. Ammonia and its deuterated isotopologues probe physical conditions in dense molecular cloud cores. The time-dependence of deuterium fractionation and the relative abundances of different nuclear spin modifications are supposed to provide a means of determining the evolutionary stages of these objects. Aims. We aim to test the current understanding of spin-state chemistry of deuterated species by determining the abundances and spin ratios of NH2D, NHD2 and ND3 in a quiescent, dense cloud. Methods. Spectral lines of NH3, NH2D, NHD2, ND3 and N2D+ were observed towards a dense, starless core in Ophiuchus with the APEX, GBT and IRAM 30-m telescopes. The observations were interpreted using a gas-grain chemistry model combined with radiative transfer calculations. The chemistry model distinguishes between the different nuclear spin states of light hydrogen molecules, ammonia and their deuterated forms. Different desorption schemes can be considered. Results. High deuterium fractionation ratios with NH2D = NH3 similar to 0 : 4, NHD2 = NH2D similar to 0 : 2 and ND3 = NHD2 similar to 0 : 06 are found in the core. The observed ortho/para ratios of NH2D and NHD2 are close to the corresponding nuclear spin statistical weights. The chemistry model can approximately reproduce the observed abundances, but consistently predicts too low ortho/para-NH2D, and too large ortho/para-NHD2 ratios. The longevity of N2H+ and NH3 in dense gas, which is prerequisite to their strong deuteration, can be attributed to the chemical inertia of N-2 on grain surfaces. Conclusions. The discrepancies between the chemistry model and the observations are likely to be caused by the fact that the model assumes complete scrambling in principal gas-phase deuteration reactions of ammonia, which means that all the nuclei are mixed in reactive collisions. If, instead, these reactions occur through proton hop/hydrogen abstraction processes, statistical spin ratios are to be expected. The present results suggest that while the deuteration of ammonia changes with physical conditions and time, the nuclear spin ratios of ammonia isotopologues do not probe the evolutionary stage of a cloud.
167

A Radio Study of Selected Regions in the Magellanic Clouds

Amy, Shaun Wallace January 2000 (has links)
The Magellanic Clouds have long provided a rich celestial laboratory for many astrophysical research programmes. Their location relatively close to the Earth and away from the plane of our Galaxy has made them a natural target for Southern Hemisphere ground-based instrumentation. Likewise, the continuing quest for images of the Clouds with higher dynamic range and improved angular resolution has driven a continual improvement in instrumentation across a range of wavelength bands. The cornerstone of this thesis is a study of selected sources in the Magellanic Clouds. The sample was chosen from the 843MHz Molonglo Observatory Synthesis Telescope survey of the Clouds, based on the existing knowledge of each source, its flux density and angular extent. This sample was used to explore observational and analysis techniques with the Australia Telescope Compact Array in order to better determine the nature of these objects and to identify those sources worthy of further study. This work highlights many pertinent issues associated with the correct classification of sources when only a limited amount of data is available. These issues led directly to the development of a more systematic approach in the classification of the Large Magellanic Cloud source sample, detailed for the first time in this thesis. Two supernova remnants in the Small Magellanic Cloud were studied in detail. The Australia Telescope images of 1E0102.2-7219 revealed, for the first time, the radio structure of this young oxygen-rich supernova remnant, and allowed a detailed comparison with existing optical and X-ray data to be undertaken. The comparisons presented in this thesis and in an earlier publication have prompted exciting new X-ray observations at unprecedented angular resolution. The second, 0101-7226, studied as part of an international collaboration, has a shell morphology at radio wavelengths but no associated X-ray emission and is therefore something of an enigma.
168

Improved determination of cloud-free radiances for oceans

Burden, Arthur R. 01 December 1999 (has links)
Improvements have been made to the spatial coherence method for automatically determining cloud-free ocean radiances in satellite imagery by incorporating the spectral signatures of reflecting surfaces. The spatial coherence method relies on the fact that small-scale cloud-free regions typically exhibit uniform emission and uniform reflection. While small-scale overcast regions typically exhibit uniform emission, they often exhibit considerable variability in reflectance. On rare occasions the requirements of spatial uniformity are not met and errors are produced in estimated cloud-free radiances. The frequency of errors in identification of cloud-free and overcast pixels was assessed using two years of Advanced Very-High Resolution Radiometer (AVHRR) data from six regions of the globe. Significant improvement in the identification of cloud-free radiances is obtained by including a test of Q, the ratio of the AVHRR channel 2 (0.83-μm) reflectance to channel 1 (0.63-μm) reflectance. Q varies depending on whether the reflecting surface is cloud-free ocean, cloud-free land, or overcast by clouds. A study was conducted to determine the dependence of Q for overcast pixels on changes in season and geography. While some variation is evident due to satellite viewing angle and differences in atmospheric water vapor content, these effects are sufficiently small that constant thresholds may be used to help separate cloud-free and overcast pixels. The modified spatial coherence method uses the threshold for Q and radiance uniformity thresholds at 0.63-μm and 11-μm to identify cloud-free and overcast pixels. A sensitivity study was performed to determine the dependence of cloud-free ocean radiance estimates on the values of the uniformity thresholds. The results of the study indicate that using thresholds of 0.5% for the 0.63-μm reflectivity and 0.5 mWm⁻²sr⁻¹cm for the 11-μm radiance, produces cloud-free radiances that are rarely biased by more than 0.4% for reflectances at 0.63 μm and 0.4 K for the 11-μm brightness temperature. The uniformity and Q thresholds may be used for a large variety of scenes from different seasons and geographic areas. / Graduation date: 2000
169

Effects of air turbulence and stochastic coalescence on the size distribution of cloud droplets

Xue, Yan. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: Lian-Ping Wang, Dept. of Mechanical Engineering. Includes bibliographical references.
170

Evaluating a New Display of Information Generated from LiDAR Point Clouds

Barbut, Ori 21 March 2012 (has links)
The design of a texture display for three-dimensional Light Detection and Ranging (LiDAR) point clouds is investigated. The objective is to present a low fidelity display that is simple to compute in real-time, which utilizes the pattern processing capabilities of a human operator to afford an understanding of the environment. The efficacy of the display is experimentally evaluated by in comparison with a baseline point cloud rendering. Subjects were shown data based on virtual hills, and were asked to plan the least-steep traversal, and identify the hill from a set of distractors. The major conclusions are: comprehension of LiDAR point clouds from the sensor origin is difficult without further processing of the data, a separated vantage point improves understanding of the data, and a simple computation to present local point cloud derivative data significantly improves the understanding of the environment, even when observed from the sensor origin.

Page generated in 0.0892 seconds