1 |
Physicochemical Characteristics and Source Apportionment of Ambient Suspended Particles at Boundary and Sensitive Sites Surrounding a Steel Manufacturing PlantLiao, Chia-cheng 24 August 2012 (has links)
Steel industry is a highly polluted industry and one of the most important stationary sources in Kaohsiung City. The steel manufacturing process could emit a huge amount of particles, such as the sintering process, the blast furnace operation, and the raw material handling process. Suspended particles emitted from steel industry could deteriorate ambient air quality and cause adverse effects on human health.
In order to understand the impact of steel industry on ambient air quality in Siaogang District and to identify potential pollution sources, this study selected a integrated steel manufacturing plant located at Siaogang District to conduct a sampling protocol of suspended particulate matter (PM) at ambient sites (A1~A5) and sensitive sites (S1~S5) from July 2011 to March 2012. The size distribution of suspended particles in four seasons was measured with PM10 high-volume samplers, dichotomous samplers, and MOUDI for 3 days (24 hours for single sampling), and dustfall samplers for one month, to investigate the spatial distribution and temporal variation of PM concentration. After sampling, the physicochemical properties of PM, including mass concentration, particle size distribution, dustfall concentration, water-soluble ionic species, metallic elements, and carbonaceous contents, were further analyzed.
Field measurement of ambient PM showed that the averaged ambient PM10 concentration (53.54 - 203.56 £gg/m3) were higher than sensitive sites (55.06 - 140.07 £gg/m3) and the averaged ambient PM2.5 concentration of ambient (23.10 - 120.21£gg/m3) were higher than sensitive sites (12.52 - 65.62 £gg/m3). No matter ambient or sensitive sites, it showed a tendency of lower concentration in summer, indicating that concentration variation of PM10 and PM2.5 were highly affected by meteorological factors (such as wind direction, wind speed, and relative humidity) in Siaogang District. Furthermore, a t-test result showed that ambient and sensitive sites have similar pollution sources since the p-values were in significantly different.
Chemical analysis of PM results showed that the most abundant water-soluble ionic species of PM at the ambient and sensitive sites were secondary inorganic aerosols (SO42-, NO3-, and NH4+) and [NO3-]/[SO42-] showed that ionic species were mainly emitted from stationary sources. Fe, Al, K and Ca were the major metallic elements of this study, and the major pollution sources contain industries, traffics, and road dusts. Additionally, the raw material handling process was the major pollution source of PM. Correlation analysis of OC and EC showed that PM at ambient and sensitive sites were originated from primary sources, such as vehicles, industries, road dusts, and human activities.
Results obtained from PCA and CMB receptor modeling showed that both PM2.5 and PM10 highly correlated with wind direction in different season and the major pollution sources were industry pollution (including petroleum refineries, power plants, waste incinerators, consistent operating steel mills and electric arc furnace steel mills, etc.), followed by local traffics and derivative. Furthermore, marine aerosols were one of the important pollution sources at sensitive sites (S1, S4, and S5) where close to the ocean.
|
2 |
Diurnal Variation of Atmospheric Particles and their Source Fingerprint at Xiamen BayWu, Chung-Yi 31 August 2011 (has links)
In recent years, the rapid development of economy and industry in Xiamen Bay causes serious environmental problems, particularly poor air quality and visibility impairment. There are no large-scale industrial emission sources in Kinmen Island, however, its ambient air quality is always the poorest in Taiwan. Moreover, ambient air quality monitoring data showed that PM10 concentrations varied in daytime and at nighttime. Consequently, this study tired to ascertain the potential causes for this phenomenon.
This study selected ten particulate matter (PM) sampling sites at Xiamen Bay, including five sites at Kinmen Island and five sites at metro Xiamen. Particulate matter sampling was conducted in daytime (8:00-17:00) and at nighttime (17:00-8:00), which included regular and intensive sampling. Regular sampling was conducted to collect PM10 with high-volume samplers three times a month from April 2009 to April 2010, while intensive sampling was conducted to collect fine (PM2.5) and coarse (PM2.5-10) particles with dichotomous samplers and particle size distribution with a MOUDI at site B2 for consecutive 5 days in the spring and winter of 2009~2010. After sampling, the physicochemical properties of PM, including mass concentrations, particle size distribution, water- soluble ionic species, metallic elements, and carbonaceous contents were further analyzed.
The level of atmospheric PM is affected by meteorological condition, thus PM10 concentrations in winter and fall was much higher than those in spring and summer. Results from backward trajectories showed that the concentrations of PM10 blown from the north were generally higher than those from the south. Furthermore, t-test analysis indicated that PM10 concentrations in daytime and at nighttime at site B3 were significantly different (p-value<0.05). During the intensive sampling periods, PM10 concentrations were mainly affected by coarse particles compared to fine particles. The highest concentration for fine and coarse particle modes occurred at the size ranges of 0.32~0.56 £gm and 3.2~5.6 £gm, respectively.
The most abundant water-soluble ionic species of PM10 were secondary inorganic aerosols (SO42-, NO3-, and NH4+) which accounted for 85% of total ions. The daytime and nighttime PM10 concentration ratios (D/N) for Mg, K, Ca, Cr, Mn, Fe, Zn, Al, Cu, As, and V were in the same order of magnitude, however, the D/N ratios of Cd, Pb, Ni, and Ti in spring and summer varied higher than an order of magnitude, indicating that the emission sources of PM were different in daytime and at nighttime. Correlation analysis of OC and EC showed that OC and EC at nighttime had a higher correlation than those in daytime, while OC and EC had a higher correlation in Kinmen Island than those in metro Xiamen, indicating carbonaceous sources must be different in summer and winter at Xiamen Bay.
Enrichment factor analysis revealed that ceramic industry, stone processing, and cement industry had higher correlation with PM10 concentration than utility power plants. Crustal dusts consisted of road dusts, farmland dusts, and constructive dusts, while biomass burning was not a negligible sources. Results obtained from PCA and CMB receptor modeling showed that major sources of PM in Xiamen Bay were secondary inorganic aerosols, fuel and biomass burning, marine aerosols, vehicular exhansts, and soil dusts. Besides, stone processing, cement industry, ceramic industry, and utility power plants had the highest contribution in winter. Their contributions in daytime and at nighttime were 38% and 45%, respectively.
|
Page generated in 0.075 seconds