• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A numerical study of CO₂-EOR with emphasis on mobility control processes : Water Alternating Gas (WAG) and foam

Pudugramam, Venkateswaran Sriram 21 November 2013 (has links)
CO₂ enhanced oil recovery (CO₂-EOR) in residual oil zones has emerged as a viable technique to maximize both the oil production and carbon storage. Most CO₂ field projects suffer from inadequate sweep because of high mobility of CO₂ compared to the oil. Gas conformance techniques have the potential to further improve the effectiveness of CO₂-EOR projects. The choice of mobility control to improve the sweep efficiency is critical and simulation studies with hysteretic relative permeability and mechanistic foam model can assist in the choice of technique and optimization of the process for each reservoir. Two promising mobility control practices of Water Alternating Gas (WAG) and foam are evaluated using the in-house compositional gas reservoir simulator (DOE-CO₂). The effect of hysteresis and cycle dependent relative permeability on WAG and foam injections incorporating a new three-phase hysteresis model has been investigated. Simulations are performed with and without hysteresis to assess the impact of the saturation history and saturation path on gas entrapment, fluid injectivity and oil recovery. The foam assisted technique in CO₂-EOR processes has also been investigated. Here foam is generated in-situ by injecting surfactant solution with CO₂ rather than directly injecting foam. A simplified yet mechanistic population-balance model implemented in the in-house simulator has been applied to test the impact of foam. The results have been compared with an empirical foam model which is the standard model in commercial simulators. Simulations have been performed on actual field models for selection and optimization of the CO₂ injection scheme, quantifying the impact of hysteresis, depicting the effectiveness of CO₂-EOR process as against a surfactant flood, the effectiveness of foam assisted floods and insights into low tension gas flooding process. All the above analyses have also been performed on layer cake models with properties replicating the Permian Basin carbonate reservoirs and Gulf Coast sandstone reservoirs. Hysteresis shows an improvement in oil recovery of gas injection schemes where flow reversal takes place. Foam has been found to be effective and the models show lower CO₂ utilizations factors compared to the case without foam. / text
2

Experimental measurement of sweep efficiency during multi-phase displacement in the presence of nanoparticles

Aminzadeh Goharrizi, Behdad 24 July 2013 (has links)
The efficiency of one fluid displacing another in permeable media depends greatly on the pore-scale dynamics at the main wetting front. Experiments have shown that the frontal dynamics can result in two different flow regimes: a stable and an unstable front. In stable displacements, any perturbation of the front will diminish with time and the effect of variation in permeability will be lessened. In contrast, in unstable displacements any perturbation of the front will grow with time and any variation in permeability will be magnified. In this dissertation, the stability of two different displacement processes are contemplated; a) vertical infiltration of dense liquid into dry sand from above and b) horizontal displacement of nanoparticle suspension with high pressure liquid CO₂. Significant insights are obtained by measuring the in-situ flow patterns in real time with a light transmission method and CT scanning. Vertical infiltration of dense fluid into dry sands from above is often observed to be unstable and produce gravity driven fingers. The formation of gravity fingers can have large consequences on the sweep efficiency of a displacement. Infiltration experiments showed that gravity driven fingers have a unique saturation profile known as saturation overshoot with a higher saturation at the finger tips than the saturation at the finger tail. Despite the vast number of theoretical and experimental investigations, conditions under which the front is unstable, remain unclear. To determine what controls the saturation overshoot and how it relates to the dynamics at the initial wetting front, saturation overshoot was measured as a function of flux for seven different liquids. These liquids gave a range of molecular weights, viscosities, and vapor pressures. It is found that for each fluid there is a flux (called overshoot flux) below which saturation overshoot ceases and the front is diffuse. The magnitude of the overshoot flux depends inversely on the invading fluid's viscosity and shows little or no dependence on the invading fluid's surface tension, vapor pressure, or miscibility with water. Since the saturation overshoot is not described by the continuum multi-phase flow models, the experimental results are used to develop a semi-continuum model that bridges the continuum-scale and pore-scale physics. The proposed model predicts the observed dependence of overshoot on media permeability and invading fluid properties. At the planned depth for CO₂ injection, either as an enhanced oil recovery technique or for CO₂ storage, CO₂ is typically less dense and less viscous than the in-situ fluid. Therefore, CO₂ injection is unstable and produces viscous fingers. This can greatly reduce the efficiency of a CO₂ flood or CO₂ storage capacity of an aquifer. To remedy this behavior, surface treated nanoparticles were used to reduce the mobility of injected CO₂. Displacement experiments were performed at low pressure with a CO₂ analogue (n-octane) fluid and at high pressure with liquid CO₂. Saturation distributions and pressure drops were measured in real time with the CT scanner when high pressure liquid CO₂ or n-octane was used to displace brine in different cores with and without suspended nanoparticles. In the presence of nanoparticles, the displacement front is more spatially uniform with a later breakthrough compared to the same experiment with no suspended nanoparticles. These observations suggest that nanoparticle stabilized foam, which forms during the displacement, acts to suppress the instability. It is argued that the generation of droplets occurs at the leading front of all drainage displacements. In the presence of nanoparticles, these droplets are preserved when nanoparticle adhere at the fluid-fluid interface. The new mechanism for foam generation described here, provides an interesting alternative for mobility control in CO₂ floods. Moreover, the same mechanism can potentially a) increase the CO₂ storage capacity of an aquifer, b) enhance the CO₂ capillary trapping, and c) provide an engineered barrier to CO₂ leakage from a storage sites, thereby alleviating the risk of contaminating the overlying fresh groundwater resources for CO₂ storage projects. / text
3

Gibbs free energy minimization for flow in porous media

Venkatraman, Ashwin 25 June 2014 (has links)
CO₂ injection in oil reservoirs provides the dual benefit of increasing oil recovery as well as sequestration. Compositional simulations using phase behavior calculations are used to model miscibility and estimate oil recovery. The injected CO₂, however, is known to react with brine. The precipitation and dissolution reactions, especially with carbonate rocks, can have undesirable consequences. The geochemical reactions can also change the mole numbers of components and impact the phase behavior of hydrocarbons. A Gibbs free energy framework that integrates phase equilibrium computations and geochemical reactions is presented in this dissertation. This framework uses the Gibbs free energy function to unify different phase descriptions - Equation of State (EOS) for hydrocarbon components and activity coefficient model for aqueous phase components. A Gibbs free energy minimization model was developed to obtain the equilibrium composition for a system with not just phase equilibrium (no reactions) but also phase and chemical equilibrium (with reactions). This model is adaptable to different reservoirs and can be incorporated in compositional simulators. The Gibbs free energy model is used for two batch calculation applications. In the first application, solubility models are developed for acid gases (CO₂ /H2 S) in water as well as brine at high pressures (0.1 - 80 MPa) and high temperatures (298-393 K). The solubility models are useful for formulating acid gas injection schemes to ensure continuous production from contaminated gas fields as well as for CO₂ sequestration. In the second application, the Gibbs free energy approach is used to predict the phase behavior of hydrocarbon mixtures - CO₂ -nC₁₄ H₃₀ and CH₄ -CO₂. The Gibbs free energy model is also used to predict the impact of geochemical reactions on the phase behavior of these two hydrocarbon mixtures. The Gibbs free energy model is integrated with flow using operator splitting to model an application of cation exchange reactions between aqueous phase and the solid surface. A 1-D numerical model to predict effluent concentration for a system with three cations using the Gibbs free energy minimization approach was observed to be faster than an equivalent stoichiometric approach. Analytical solutions were also developed for this system using the hyperbolic theory of conservation laws and are compared with experimental results available at laboratory and field scales. / text

Page generated in 0.0158 seconds