Spelling suggestions: "subject:"CO2 conversion"" "subject:"CO2 eonversion""
1 |
Effect of SiO2/Al2O3 Ratio of Zeolite Beta in a Bi-functional System for Direct CO2 Hydrogenation into Value Added ChemicalsAlkhalaf, Ahmed S. 06 1900 (has links)
Carbon dioxide levels in atmosphere are linked with a number of adverse environmental impacts including climate change. CO2 utilization is one of the available technologies to reduce CO2 emissions released into atmosphere by its conversion into value added products. Hydrogenation of CO2 into hydrocarbons (with methanol being an intermediate) can be achieved in a single-pot using bi-functional catalysis system composed of metal/metal-oxide and zeolite. In this study, activated novel indium cobalt (InCo) and zeolite beta samples (BEA) were used for the conversion of CO2 into a hydrocarbon mixture rich of iso-paraffins via methanol in a single pot. The objective was to investigate the effect of zeolite beta acidity (represented by SiO2/Al2O3 ratio) and the configuration of the reactor on the overall performance of the above mentioned bi-functional system. Three samples of zeolite beta with different SiO2/Al2O3 ratios were synthesized in-house (Beta-20, Beta-100 and Beta-300) and used along with commercial beta as methanol to hydrocarbons catalysts.
XRD patterns of the synthesized samples showed that all of the obtained samples are zeolite beta with high crystallinity. Adsorption-desorption isotherms of the studied zeolites revealed micro-mesoporosity of the samples. Analysis of SEM images suggests that the particles of the studied samples are of a similar range of size (100-200 nm).
Each zeolite sample was used to fill two reactor configurations: dual bed and mixed bed. Samples were tested at a temperature of 300 oC, a pressure of 50 bar and CO2:H2 ratio of 1:4 except for Beta-100 sample which was tested at a CO2:H2 ratio of 1:3. CO2 conversion is a characteristic of the methanol synthesis catalyst (InCo) and it ranged between 15% to 20% for all cases. Dimethyl ether (DME) generation in dual bed configuration was much faster and at much higher rates than in mixed bed configuration for all tested samples, indicating that mixed bed configuration is more stable for this particular system. Heavier hydrocarbons (C6 and C7) are generated in higher amounts over low acidic zeolite beta than over beta of high acidity. More acidic zeolite beta, however, was found to be more stable than beta of less acidity.
|
2 |
Preparation of bulk and supported Co/Mo carbide catalysts for CO2 conversionAlmuqati, Naif January 2013 (has links)
This thesis investigates the preparation and characterisation of Co/Mo bimetallic carbides and their stability and catalytic activity as bulk catalysts for the Dry Methane Reforming (DMR) reaction and as supported catalysts on alumina. The DMR reaction was chosen due to its importance in producing syngas, as a precursor for liquid fuels, from CO<sub>2</sub> and CH<sub>4</sub>, two greenhouse gases. Bulk and supported bimetallic carbides were prepared by reductive carburization of the oxides with various hydrocarbons. The resultant carbides were characterized by X-Ray diffraction. Reactivity studies were undertaken by investigating the variable temperature reactivity of the catalysts on the DMR reaction. Characterization studies indicate that the oxides were transformed to the carbides successfully and these carbides had significant catalytic activity and were stable under the conditions used in the investigations.
|
3 |
Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) ReactionAbdollahi, Farhang 05 April 2013 (has links)
In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic fuel production. If the CO2 for this process can be captured from high emitting industries it can be a very good alternative for reduced fossil fuel consumption and GHG emission mitigation. CO as an active gas could be used in Fischer-Tropsch process to produce conventional fuels. Literature review and process simulation were carried out in order to determine the best operating conditions for reverse water gas shift (RWGS) reaction. Increasing CO2 conversion to CO requires CO2/CO separation downstream of the reactor and recycling unreacted CO2 and H2 back into the reactor. Adsorption as a viable and cost effective process for gas separation was chosen for the CO2/CO separation. This was started by a series of adsorbent screening experiments to select the best adsorbent for the application. Screening study was performed by comparing pure gas isotherms for CO2 and CO at different temperatures and pressures. Then experimental isotherm data were modeled by the Temperature-Dependent Toth isotherm model which provided satisfactory fits for these isotherms. Henry law’s constant, isosteric heat of adsorption and binary mixture prediction were determined as well as selectivity for each adsorbent. Finally, the expected working capacity was calculated in order to find the best candidate in terms of adsorption and desorption. Zeolite NaY was selected as the best candidate for CO2/CO separation in adsorption process for this project. In the last step breakthrough experiments were performed to evaluate operating condition and adsorption capacity for real multi component mixture of CO2, CO, H2 in both cases of saturated with water and dry gas basis. In multi components experiments zeolite NaY has shown very good performance to separate CO2/CO at low adsorption pressure and ambient temperature. Also desorption experiment was carried out in order to evaluate the working capacity of the adsorbent for using in industrial scale and eventually temperature swing adsorption (TSA) process worked very well for the regeneration step. Integrated adsorption system downstream of RWGS reactor can enhance the conversion of CO2 to CO in this process significantly resulting to provide synthetic gas for synthetic fuel production as well as GHG emission mitigation.
|
4 |
A novel solar-driven system for two-step conversion of CO2 with ceria-based catalystsWei, Bo January 2014 (has links)
Global warming is an unequivocal fact proved by the persistent rise of the average temperature of the earth. IPCC reported that scientists were more than 90 % certain that most of the global warming was caused by increasing concentrations of greenhouse gases (GHG) produced by human activities. One alternative to combat the GHG is to explore technologies for utilizing CO2 already generated by current energy systems and develop methods to convert CO2 into useful combustible gases. Two-step conversion of CO2 with catalysts is one of the most promising methods. Ceria (CeO2) is chosen as the main catalyst for this conversion in the thesis. It releases O2 when it is reduced in a heating process, and then absorbs O2 from CO2 to produce CO when it is re-oxidized in a cooling process. To make the conversion economic, solar power is employed to drive the conversion system. In this thesis, a flexible system with fluidized bed reactors (FBRs) is introduced. The thermogravimetric analysis (TGA) was carried out to examine the performance of ceria during its reduction and oxidation. Subsequently, the exergy analysis was used to evaluate the system’s capability on exporting work. The theoretical fuel to chemical efficiency varied from 4.85 % to 43.2 % for CO2 conversions. To investigate the operation mechanism of the system, a mathematical model was built up for the dynamic simulation of the system. Variables such as temperatures and efficiencies were calculated and recorded for different cases. The optimum working condition was found out to be at 1300 ⁰C for the commercial type of ceria. Finally, an experimental system was set up. The hydrodynamics and heat transfer in the fluidized bed reactor were studied. A CFD model was built up and validated with the experimental trials around 120 ⁰C. The model was then used as a reliable tool for the optimization of the reactor. The entire work in the thesis follows the procedure of developing an engineering system. It forms a solid basis for further improvements of the system to recycle CO2. / <p>QC 20141006</p>
|
5 |
Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) ReactionAbdollahi, Farhang 05 April 2013 (has links)
In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic fuel production. If the CO2 for this process can be captured from high emitting industries it can be a very good alternative for reduced fossil fuel consumption and GHG emission mitigation. CO as an active gas could be used in Fischer-Tropsch process to produce conventional fuels. Literature review and process simulation were carried out in order to determine the best operating conditions for reverse water gas shift (RWGS) reaction. Increasing CO2 conversion to CO requires CO2/CO separation downstream of the reactor and recycling unreacted CO2 and H2 back into the reactor. Adsorption as a viable and cost effective process for gas separation was chosen for the CO2/CO separation. This was started by a series of adsorbent screening experiments to select the best adsorbent for the application. Screening study was performed by comparing pure gas isotherms for CO2 and CO at different temperatures and pressures. Then experimental isotherm data were modeled by the Temperature-Dependent Toth isotherm model which provided satisfactory fits for these isotherms. Henry law’s constant, isosteric heat of adsorption and binary mixture prediction were determined as well as selectivity for each adsorbent. Finally, the expected working capacity was calculated in order to find the best candidate in terms of adsorption and desorption. Zeolite NaY was selected as the best candidate for CO2/CO separation in adsorption process for this project. In the last step breakthrough experiments were performed to evaluate operating condition and adsorption capacity for real multi component mixture of CO2, CO, H2 in both cases of saturated with water and dry gas basis. In multi components experiments zeolite NaY has shown very good performance to separate CO2/CO at low adsorption pressure and ambient temperature. Also desorption experiment was carried out in order to evaluate the working capacity of the adsorbent for using in industrial scale and eventually temperature swing adsorption (TSA) process worked very well for the regeneration step. Integrated adsorption system downstream of RWGS reactor can enhance the conversion of CO2 to CO in this process significantly resulting to provide synthetic gas for synthetic fuel production as well as GHG emission mitigation.
|
6 |
Conception d'un procédé d'électrosynthèse microbienne / Design of a microbial electrosynthesis cellBlanchet, Elise 01 April 2016 (has links)
L’électrosynthèse microbienne est une technologie innovante qui permet de convertir le dioxyde de carbone en molécules organiques en utilisant une cathode comme source d’électrons de la réduction microbienne du CO2. Le procédé «Biorare» propose de coupler l’électrosynthèse microbienne avec l’oxydation de déchets à l’anode afin d’augmenter le rendement énergétique du procédé. Il devient ainsi possible de traiter un effluent à l’anode et de valoriser du CO2 à la cathode. La thèse a eu pour objectif d’améliorer les performances de la bioanode et de la biocathode séparément, afin de réaliser in fine un prototype de procédé «Biorare» à l’échelle du laboratoire. Parmi plusieurs types de déchets testés, les boues biologiques se sont avérées bien adaptées pour une utilisation à l’anode en assurant des densités de courant jusqu’à 10 A/m2. Toutefois, ces performances étant peu reproductibles, nous avons choisi d’exploiter des biodéchets, dont le gisement représente plus de 22 millions de tonnes en France et la valorisation est aujourd’hui obligatoire. Leur utilisation brute n’a pas permis de dépasser 1 A/m2 mais une méthode innovante de formation des bioanodes a permis d’augmenter les densités de courant jusqu’à 7 A/m2, de façon reproductible et dans des conditions extrapolables. Les travaux sur les biocathodes ont révélé que l’hydrogène est un intermédiaire réactionnel clé pour le transfert d’électrons de la cathode vers les microorganismes qui réduisent le CO2. Cela a conduit à découpler le procédé initial en deux étapes : l’hydrogène est produit dans une cellule d’électrolyse microbienne qui oxyde les biodéchets et, en aval, un bioréacteur gaz-liquide utilise l’hydrogène pour convertir le CO2 en acétate, éthanol, formiate, ou butyrate, suivant les systèmes microbiens. Cette stratégie permet d’augmenter les performances d’un facteur 24 avec une vitesse de production d’acétate de 376 mg/L/j et des concentrations jusqu’à 11 g/L. / Microbial electrosynthesis is an innovative technology to produce organic molecules from CO2, using a cathode as electron source for the microbial reduction of CO2. The Biorare process intends to associate the microbial electrosynthesis with the oxidation of organic wastes at the anode, in order to increase the energetic yield of the process. The system allows thus both the treatment of polluted effluents at the anode and CO2 valorization to organic molecules at the cathode. The purpose of the PhD work was to improve the bioanode and biocathode performance separately, to finally design a Biorare prototype at laboratory scale. Among the various wastes tested, biological sludge was a good substrate, which led to current densities up to 10 A/m2. However, the performance was not reproducible and it was decided to use food wastes, which constitute an abundant resource of 22 million tons in France that must be valorized. The use of raw food waste did not allow exceeding 1 A/m2, but a new method for bioanode formation improved the current density up to 7 A/m2 in a reproducible and close-to-industrial way. The study on biocathodes revealed hydrogen as a key intermediate in electron transfer from the cathode to the microbial cells that reduce CO2. This led to dissociate the initial process into two steps: hydrogen is produced in a microbial electrolysis cell that oxidizes food wastes and, downstream, a gas-liquid bioreactor uses hydrogen to convert CO2 to acetate, ethanol, formate or butyrate, depending on the microbial system. This strategy allowed increasing the performance by a factor 24 with a maximal acetate production rate of 376 mg/L/j and concentrations up to 11 g/L.
|
7 |
CO2 splitting in a dielectric barrier discharge plasma: understanding of physical and chemical aspectsOzkan, Alp 28 October 2016 (has links)
Le dioxyde de carbone, principal gaz à effet de serre lié aux activités humaines, est considéré comme l’un des gaz les plus problématiques pour notre environnement ces dernières années, principalement à cause du réchauffement climatique qu’il engendre. C’est pour cette raison que l’augmentation de sa teneur dans l’atmosphère nous concerne tous quant aux conséquences futures pour notre planète. Afin de limiter l’émission de CO2, sa conversion en composés à valeur ajoutée présente un grand intérêt et est possible notamment via des procédés plasmas. Plus particulièrement, les décharges à barrière diélectrique (DBD) sont utilisées depuis quelques années pour générer des plasmas froids opérant à pression atmosphérique, principalement pour des applications en traitement de surface, mais également pour le traitement d’effluents gazeux.Lors de cette thèse, nous nous sommes focalisés sur le processus de dissociation du CO2 en CO et O2 via un réacteur DBD à flux continu et avons analysé sa conversion et son efficacité énergétique via différentes études. Celles-ci ont été réalisées grâce à plusieurs méthodes de diagnostic, comme par exemple la spectrométrie de masse utilisée pour déterminer la conversion et l’efficacité du processus, la spectroscopie d’émission optique, l’oscilloscope pour une caractérisation électrique, etc. afin d’avoir une meilleure compréhension du comportement des décharges CO2.Dans un premier temps, nous avons réalisé une étude détaillée d’un plasma CO2 pur où nous avons fait varier différents paramètres, tels que le temps de résidence, la fréquence, la puissance, la pulsation de la haute tension et l’épaisseur et la nature du diélectrique. Le CO2 donne lieu généralement à une décharge filamentaire, consistant en de nombreuses microdécharges réparties au niveau de la zone du plasma. Celles-ci constituent la principale source de réactivité dans une DBD. Un aperçu détaillé de l’aspect physique de ces microdécharges a été réalisé grâce à la caractérisation électrique, permettant de mieux comprendre les propriétés électriques de la décharge et des microdécharges. En effet, nous avons pu déterminer l’importance de la tension présente au niveau du plasma, de l’intensité du courant plasma, du nombre de microdécharges et de leur temps de vie sur l’efficacité du processus de dissociation de CO2.Ensuite, nous avons conclu ce travail avec des études combinant le CO2 en phase plasma avec de l’eau ou du méthane afin de produire des molécules à valeur ajoutée telles que les syngas (CO et H2), mais aussi des hydrocarbures (C2H6, C2H4, C2H2 et CH2O) dans le cas de l’ajout du méthane. A travers ces études, nous avons obtenu une meilleure connaissance de la chimie et de la physique qui ont lieu dans ce type de plasma. / Carbon dioxide appears as one of the most problematic gases for the environment, mostly because it is responsible for global warming. This is why its increasing concentration into the atmosphere, mainly due to anthropogenic activities, is a real concern for planet Earth. In order to prevent the release of large amounts of CO2, its conversion into value-added products is of great interest. In this context, plasma-based treatments using dielectric barrier discharges (DBDs) are nowadays more and more used for the conversion of this gas. In this thesis, we investigated the CO2 splitting process into CO and O2 via a flowing cylindrical DBD and we studied its conversion and energy efficiency by means of several diagnostic methods, such as mass spectrometry to determine the conversion and energy efficiency of the process, optical emission spectroscopy for gas temperature measurements, and an oscilloscope for electrical characterization, in order to obtain a better understanding of the CO2 discharge itself.First, we focused on an extensive experimental study of a pure CO2 plasma where different parameters were varied, such as the gas residence time, the operating frequency, the applied power, the pulsation of the AC signal, the thickness and the nature of the dielectric. CO2 discharges typically exhibit a filamentary behavior, consisting of many microdischarges, which act as the main source of reactivity in a DBD. A detailed insight in the physical aspects was achieved by means of an in-depth electrical characterization, allowing more insight in the electrical properties of the discharge and more specifically in the microdischarges, which are spread out throughout the active zone of the plasma. It was found throughout this work that the plasma voltage, which reflects the electric field and thus determines how the charged particles are accelerated, the plasma current, which reflects the electron density, but also the number of microdischarges and their average lifetime, play an important role in the efficiency of the CO2 dissociation process. It was revealed that the microdischarge number is important as it represents the repartition of the locations of reactivity. Indeed, as the microfilaments are more spread out in the same discharge volume, the probability for the CO2 molecules to pass through the reactor and interact with at least one microdischarge filament becomes more important at a larger number of microfilaments.The second part of the thesis was dedicated to discharges combining CO2 and H2O or CH4, both being hydrogen source molecules. The combined CO2/H2O or CO2/CH4 conversion allows forming value-added products like syngas (CO and H2), but also hydrocarbons (C2H6, C2H4, C2H2 and CH2O), at least in the presence of methane. Throughout this study, we tried to obtain a better knowledge of the chemistry and physic behind these conversion processes. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
8 |
A study of microwave plasma-assisted CO2 conversion by plasma catalysisChen, Guoxing 21 June 2017 (has links)
Climate change and global warming caused by the increasing greenhouse gases emissions (such as CO2) in the atmosphere recently attract the attention of the scientific community. These large emissions have been correlated to the Global Warming effect which has many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for a long time to come. It is necessary to find an alternative way to get rid of the resulting environmentally harmful emissions. A promising solution is the use of CO2-free electrical energy produced, for example, by renewable or nuclear sources, for dissociation of CO2 or other greenhouse gases, followed by their conversion into easily storable fuels. In this context, the CO2 re-utilization to synthesize syngas, fuels or chemical compounds as well as pure CO2 dissociation into CO and O2, is of a special interest. Among the different methods to convert CO2 into added-value products (thermolysis, thermochemical cycles, electrolysis, photocatalysis, etc), the discharges sustained by microwave radiation combining high electron and low gas temperature have already demonstrated huge potential for plasma-assisted CO2 conversion. The present research work is targeted to the systematic investigation of the microwave-assisted conversion of various CO2-based gas mixtures being especially focused on plasma catalysis. The different physical effects affecting the efficiency of plasma catalysis are considered, for a better understanding of the synergistic effects between plasma and catalyst. The characterization of microwave discharges is performed by various plasma diagnostics methods, including optical spectroscopy and gas chromatography. In addition, the catalysts have been characterized by the state of art material characterization techniques, such as Transmission electron microscopy (TEM), Raman spectroscopy, etc. Such a combined characterization of both plasma and catalysts is performed for the sake of better understanding of the plasma-catalytic processes.In the first part of this study, the different dissociation pathways of the studied molecule as a function of different plasma parameters are considered by evaluating the composition with different plasma diagnostic techniques. A simple increase of Specific Energy Input (SEI) is not a promising solution since in this case the energy efficiency drops. The beneficial effects of lowering the pulse frequency for increasing CO2 conversion efficiency are observed and discussed. The obtained results are explained by the relation between the plasma pulse parameters and the rates of the relevant energy transfer mechanisms in the discharge. Simultaneous dissociation of CO2 and H2O has been investigated as well. It was clearly demonstrated that both H2 and CO productions are strongly affected by the different plasma parameters. The second part of this study deals with the effects of catalyst preparation method, nature of plasma activation gas, gas admixture, as well as NiO content and their influences on the CO2 conversion and energy efficiencies in microwave plasma. It was found throughout this work that the catalyst preparation method has a significant effect on the chemical and physical properties of the catalysts, which in turn strongly influences CO2 conversion and energy efficiencies of this process. In particular Ar plasma treatment results in a higher density of oxygen vacancies and a very favorable distribution of nickel oxide on the TiO2 surface. It is concluded that, the oxygen vacancies are the key factor explaining high catalytic activity in CO2 decomposition. The dissociative electron attachment of CO2 at the catalyst surface enhanced by the oxygen vacancies and plasma electrons can explain the observed increase of CO2 conversion efficiency as well as the energy efficiency. A mechanism explaining the observed plasma–catalyst synergy is proposed. The overall aim is to establish a model describing the interaction between highly reactive species produced in plasma discharge and supported catalyst for the conversion of CO2 into useful compounds. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
9 |
Photocatalytic Reduction of CO2 with Tunable Bandgap and Bandedge MaterialsNgo, Thuhuong T. 18 November 2016 (has links)
Solar energy is a sustainable resource which has substantial potential to meet the increasing demand for renewable energy. Though there has been some success in harvesting solar energy for electricity production, converting solar energy to chemical energy as fuels is still a challenge due to low efficiency.
Since the discovery of TiO2 photocatalysts for splitting water (4) and reducing CO2 (5) to form useful chemical feedstock such as H2, CO and CH4, much research has been done to increase the efficiency of photocatalysts. However, the current conversion efficiency of photocatalysts remains low (~5%) (6, 7). Issues being addressed include the wide bandgap and mismatched band edge for reactions (thermodynamic energy for reaction), poor quantum efficiency of the photon collector systems, high recombination of e-/h+ pairs and limitation in the rate of charge transfer from photocatalyst to reactants.
This work focuses on improving efficiency of photocatalysts for fuel production through several approaches: (1) engineering a metal-organic-framework (MOF) to have proper band gaps and band edges for targeted reactions and for enhancing photoadsorption in the visible light range, (2) tuning an ABO3-type perovskite for desired bandgaps and thermodynamically favored bandedges for CO2 reduction with water in visible light range.
A porphyrin-based Ti-MOF is studied for CO2 photoreduction to gaseous chemical fuels such as CH4 and CO. The porphyrin linkers allow porphyrin-based MOF-525 to achieve narrow bandgap (Eg = ~1.7eV) to absorb visible light, indicating its ability to harvest more solar energy than conventional TiO2. Ti/Zr-MOF-525 also exhibited the appropriate energy level alignment for CO2 and H2O redox reaction for CO and CH4 production. Its CO2 photoreactivity under visible light was demonstrated in a photoreaction, illuminated by 150W Xenon solar simulator. Interestingly, Ti/Zr-MOF-525 demonstrates a selectivity toward CH4, a more valuable fuels than CO. The gas phase reaction condition is an advance over liquid photoreaction. The catalyst stability was also studied and presented. After 3 cycles of reactions, Ti/Zr-MOF-525 is relatively stable for CO2 photoreduction and able to maintain its photoreactivity at about 60-65% of fresh catalyst. The reduction of reactivity is due to a less stable fresh catalyst.
When investigating LaCr1-xFexO3 perovskite oxides for photocatalyst, it was found that when replacing Cr ions at the B sites of LaCrO3 by Fe ions, the bandgap does not follow a linear trend in regards to metal ratio composition but rather reflects the smaller bandgap of LaFeO3. Bandedges were successfully measured for the new synthesized materials. At x = 0.25, the conduction band potential remains similar with x = 0. However, at x = 0.75, the conduction band potential was more negative than either perovskites at x = 0 or x = 1. Future simulation of density of state could address this interesting observation. CO2 reduction relativities of each perovskites were predicted well by their measured bandgaps and bandedges. Among five studied perovskites, synthesized LaCr0.25Fe0.75O3 (x = 0.75) is the most active for CO2 photoreduction under visible illumination at room temperature thanks to its small bandgap (2.0 eV) and its suitable bandedges for CO2 photoreduction.
|
10 |
Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) ReactionAbdollahi, Farhang January 2013 (has links)
In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic fuel production. If the CO2 for this process can be captured from high emitting industries it can be a very good alternative for reduced fossil fuel consumption and GHG emission mitigation. CO as an active gas could be used in Fischer-Tropsch process to produce conventional fuels. Literature review and process simulation were carried out in order to determine the best operating conditions for reverse water gas shift (RWGS) reaction. Increasing CO2 conversion to CO requires CO2/CO separation downstream of the reactor and recycling unreacted CO2 and H2 back into the reactor. Adsorption as a viable and cost effective process for gas separation was chosen for the CO2/CO separation. This was started by a series of adsorbent screening experiments to select the best adsorbent for the application. Screening study was performed by comparing pure gas isotherms for CO2 and CO at different temperatures and pressures. Then experimental isotherm data were modeled by the Temperature-Dependent Toth isotherm model which provided satisfactory fits for these isotherms. Henry law’s constant, isosteric heat of adsorption and binary mixture prediction were determined as well as selectivity for each adsorbent. Finally, the expected working capacity was calculated in order to find the best candidate in terms of adsorption and desorption. Zeolite NaY was selected as the best candidate for CO2/CO separation in adsorption process for this project. In the last step breakthrough experiments were performed to evaluate operating condition and adsorption capacity for real multi component mixture of CO2, CO, H2 in both cases of saturated with water and dry gas basis. In multi components experiments zeolite NaY has shown very good performance to separate CO2/CO at low adsorption pressure and ambient temperature. Also desorption experiment was carried out in order to evaluate the working capacity of the adsorbent for using in industrial scale and eventually temperature swing adsorption (TSA) process worked very well for the regeneration step. Integrated adsorption system downstream of RWGS reactor can enhance the conversion of CO2 to CO in this process significantly resulting to provide synthetic gas for synthetic fuel production as well as GHG emission mitigation.
|
Page generated in 0.0494 seconds