Spelling suggestions: "subject:"CO2 leakage"" "subject:"CO2 eakage""
1 |
Avalia??o da utiliza??o de microcosmos como ferramenta de an?lise da efic?cia de biomonitoramento no controle de vazamento de CO2Licks, Leticia Azambuja dos Santos 16 May 2018 (has links)
Submitted by PPG Engenharia e Tecnologia de Materiais (engenharia.pg.materiais@pucrs.br) on 2018-07-10T19:17:06Z
No. of bitstreams: 1
TESELL_5jul.pdf: 8671551 bytes, checksum: c59b1fb1df38a655609d9a3ce6cd7d50 (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-07-13T20:27:02Z (GMT) No. of bitstreams: 1
TESELL_5jul.pdf: 8671551 bytes, checksum: c59b1fb1df38a655609d9a3ce6cd7d50 (MD5) / Made available in DSpace on 2018-07-13T20:37:40Z (GMT). No. of bitstreams: 1
TESELL_5jul.pdf: 8671551 bytes, checksum: c59b1fb1df38a655609d9a3ce6cd7d50 (MD5)
Previous issue date: 2018-05-16 / The climate changes associated with the increase of greenhouse gases emissions to the atmosphere stand out as one of the greatest current environmental concerns. Extensive research is being conducted in order to reduce the amount of emissions and their impact on climate. Carbon dioxide (CO2) is the main greenhouse gas contributing to this problem. Therefore, it is increasingly important to find solutions to reduce CO2 levels in the atmosphere. Among the feasible techniques to reduce these emissions is the geological storage, which consists of injecting large amounts of this gas into deep underground geological formations. To be effective, CO2 must be trapped in these deep geological formations for at least several centuries. In this context, monitoring of CO2 leakages and seepages to sensitive environments is a key step in the process. Research on monitoring and verification of CO2 leakages in shallow environments are carried out in large areas prepared for controlled injection and leakage of this gas, this techniques for its detection are hard and expensive. In this sense, this study aims to verify the use of microcosms as a biomonitoring tool to control CO2 leakage by conducting controlled injections of CO2 into continuous flow columns under different experimental conditions. For this, physical, chemical and microbiological analyzes were performed in the soil before, during and after percolation
of CO2 in the column. These parameters were also analyzed with in situ soil samples.
Based on statistical methods at the end of the study, it was observed that the design
of the columns was suitable, however, the chosen parameters were insufficient to
determine the influence of CO2 on the proposed test conditions. / As mudan?as clim?ticas associadas ? intensifica??o do efeito estufa est?o entre as maiores preocupa??es ambientais atuais. Muita pesquisa tem sido realizada com o intuito de reduzir o impacto dos gases associados ao efeito estufa, dentre eles o di?xido de carbono (CO2). Devido ? grande contribui??o do CO2 para o aquecimento global, ? cada vez mais importante a realiza??o de estudos que visem a diminui??o
de seus n?veis na atmosfera. Entre as t?cnicas vi?veis para conter estas emiss?es est? o armazenamento geol?gico de carbono, que consiste em injetar quantidades significativas deste g?s em forma??es geol?gicas. No entanto, para ser efetiva, o CO2 deve ficar retido nestas forma??es geol?gicas profundas, n?o retornando a superf?cie a longo prazo. Assim, o monitoramento de vazamentos de CO2 ? uma etapa fundamental no processo de armazenamento geol?gico. Estes estudos usualmente s?o realizados em ?reas extensas preparadas para testes controlados de inje??o e vazamento de g?s (geralmente trabalhosos e dispendiosos). Este trabalho teve como objetivo verificar a utiliza??o de microcosmos como ferramenta de biomonitoramento
no controle de vazamento de CO2, realizando inje??es controladas de CO2 em colunas de fluxo cont?nuo em diferentes condi??es experimentais. Foram realizadas an?lises f?sico qu?micas e microbiol?gicas no solo antes, durante e ap?s a percola??o de CO2 na coluna. Esses par?metros tamb?m foram comparados com amostras do solo in situ. Com base em m?todos estat?sticos no fim do estudo foi observado que o projeto
das colunas foi adequado, no entanto, os par?metros escolhidos foram insuficientes para determinar a influ?ncia do CO2 nas condi??es de ensaio proposta.
|
2 |
A study of natural CO₂ reservoirs : mechanisms and pathways for leakage and implications for geologically stored CO₂Miocic, Johannes Marijan January 2016 (has links)
Carbon Capture and Storage (CCS) is a suite of technologies available to directly reduce carbon dioxide (CO2) emissions to the atmosphere from fossil fuelled power plants and large industrial point sources. For a safe deployment of CCS it is important that CO2 injected into deep geological formations does not migrate out of the storage site. Characterising and understanding possible migration mechanisms and pathways along which migration may occur is therefore crucial to ensure secure engineered storage of anthropogenic CO2. In this thesis naturally occurring CO2 accumulations in the subsurface are studied as analogue sites for engineered storage sites with respect to CO2 migration pathways and mechanisms that ensure the retention of CO2 in the subsurface. Geological data of natural CO2 reservoirs world-wide has been compiled from published literature and analysed. Results show that faults are the main pathways for migration of CO2 from subsurface reservoirs to the surface and that the state and density of CO2, pressure of the reservoir, and thickness of the caprock influence the successful retention of CO2. Gaseous, low density CO2, overpressured reservoirs, and thin caprocks are characteristics of insecure storage sites. Two natural CO2 reservoirs have been studied in detail with respect to their fault seal properties. This includes the first study of how fault rock seals behave in CO2 reservoirs. It has been shown that the bounding fault of the Fizzy Field reservoir in the southern North Sea can with hold the amount of CO2 trapped in the reservoir at current time. A initially higher gas column would have led to across fault migration of CO2 as the fault rock seals would not have been able to withhold higher pressures. Depending on the present day stress regime the fault could be close to failure. At the natural CO2 reservoir of St. Johns Dome, Arizona, migration of CO2 to the surface has been occurring for at least the last 500 ka. Fault seal analysis shows that this migration is related to the fault rock composition and the orientation of the bounding fault in the present day stress field. Using the U-Th disequilibrium method the ages of travertine deposits of the St. Johns Dome area have been determined. The results illustrate that along one fault CO2 migration took place for at least 480 ka and that individual travertine mounds have had long lifespans of up to ~350 ka. Age and uranium isotope trends along the fault have been interpreted as signs of a shrinking CO2 reservoir. The amount of CO2 calculated to have migrated out of the St. Johns Dome is up to 113 Gt. Calculated rates span from 5 t/yr to 30,000 t/yr and indicate that at the worst case large amounts of CO2 can migrate rapidly from the subsurface reservoir along faults to the surface. This thesis highlights the importance of faults as fluid pathways for vertical migration of CO2. It has been also shown that they can act as baffles for CO2 migration and that whether a fault acts as pathway or baffle for CO2 can be predicted using fault seal analysis. However, further work is needed in order to minimise the uncertainties of fault seal analysis for CO2 reservoirs.
|
3 |
Structural Analysis of CO2 Leakage Through the Salt Wash and Little Grand Wash Faults from Natural Reservoirs in the Colorado Plateau, Southeastern UtahWilliams, Anthony P. 01 May 2004 (has links)
The Little Grand Wash fault and the Salt Wash Graben in the Colorado Plateau of southeastern Utah emit CO2 gas from abandoned drillholes, springs, and a hydrocarbon seep. Similar CO2-charged water has also been emitted in the past, as shown by large localized travertine deposits and veins along and near the fault traces. The faults cut natural CO2 reservoirs and provide an excellent analog for geologic CO2 sequestration. The faults cut a north-plunging anticline of rocks consisting of siltstones, shales, and sandstones from the Permian Cutler Formation through the Cretaceous Mancos Shale. The Little Grand Wash fault has 260 m of throw and the stratigraphic separation across the Salt Wash Graben is 50 m. The fault rocks in the damage zone show hundreds of fractures, which decrease in density farther away from the faults. In specific areas, fractures with the presence of calcite mineralization indicate fluid migration and bleach zones from a few millimeters to 30 cm. This is evidence of past fluid migration directly associated with the fault zone. Calcite mineralization fills these fractures and is also deposited in a variety of other bed forms. Foliated fault gouge, 5 to 20 cm thick, forms clay smear structures with a scaly shear fabric in a zone l0 to 15 cm thick is seen in the fault core. The leakage is constrained to the footwalls of the northernmost faults throughout the area. Clay-rich gouge structures should be effective barriers to cross-fault flow . Well log, surface geologic, and geochemical data indicate that the CO2 reservoirs have been cut by the faults at depth, providing a conduit for the vertical migration of CO2 to the surface, but not for horizontal flow across the fault plane. Even though lateral cross-fault migration may be impeded, this study clearly indicates that there are possible migration pathways for the escape of CO2 from faulted subsurface aquifers, including aquifers faulted by "low-permeability" faults with clay gouge. Three-dimensional flow models show how the fault's maximum permeability in the damage zone is parallel to the faults, and the leakage though the damage zone is localized near the fold axis of the regional anticline. Direct dating of the clay in the fault gouge was done by ExxonMobil with 40Ar/39Ar methods, indicating that fault movement occurred between the middle Eocene and the end of the Miocene. During this time, the Colorado Plateau is interpreted to have been experiencing rapid uplift. The middle Jurassic, upper Jurassic, and Cretaceous rocks at the surface have been uplifted approximately 1.8 km since the end of the Eocene. This uplift may have influenced fault movement in the Colorado Plateau and along the Little Grand Wash fault, and Salt Wash and Ten Mile Graben. In evaluating these deep aquifers for CO2 sequestration, careful design and monitoring of the geological structure and stress regimes must be considered to avoid leakage.
|
4 |
Estimating permeability distribution of leakage pathways along existing wellboresCheckai, Dean Alen 06 November 2012 (has links)
Increasing surface pressure buildup levels and surface venting flow rates on intermediate wellbore casing strings provided an opportunity to analyze wellbore field data to determine a distribution of leakage path permeability values. The gas leakage source in the leaky wellbore originated at depth, and formation gas/fluid traveled along defects in the cement to accumulate at the surface wellhead. The most likely pathway is the cement interface with casing or formation. Due to uncertainty about the location of the leak, and the different methods that were used for calculating leakage parameter values, a range of leakage path permeability values was produced. Most leakage pathway permeability values were greater than intact cement permeability (few microdarcies). This finding supports the practice of using cement filled annuli to provide a safe protective barrier against leakage and to prevent gas flow to surface. Proper cementing techniques are presented in order to identify possible reasons for cracks to form. It is hypothesized that the higher permeability values are a result of cracks in the cement interface with the casing or formation. These types of defects could also be found in wellbores that are in communication with CO2 sequestration reservoirs. The risk of leakage along such existing wellbores associated with CO2 sequestration projects is quantified by the distribution of leakage path permeability. The gas migration path through existing leaky wellbores is an analog for wellbores that are in contact with migrating CO2 plumes. Cracks in the leaky wellbores provide a highly permeable conduit for CO2 to migrate out of the injection zone to the surface. By quantifying leakage path permeability, proper leakage risk assessment can be further developed. / text
|
5 |
Modeling CO₂ leakage from geological storage formation and reducing the associated riskTao, Qing, Ph. D. 19 November 2012 (has links)
Large-scale geological storage of CO₂ is likely to bring CO₂ plumes into contact with existing wellbores and faults, which can act as pathways for leakage of stored CO₂ Modeling the flux of CO₂ along a leaky pathway requires transport properties along the pathway. We provide an approach based on the analogy between the leakage pathway in wells that exhibit sustained casing pressure (SCP) and the rate-limiting part of the leakage pathway in any wellbore that CO₂ might encounter. By using field observations of SCP to estimate transport properties of a CO₂ leakage pathway, we obtain a range of CO₂ fluxes for the cases of buoyancy-driven (post-injection) and pressure-driven (during injection) leakage. The fluxes in example wells range from background levels to three orders of magnitude higher than flux at the natural CO₂ seep in Crystal Geyser, Utah. We estimate a plausible range of fault properties from field data in the Mahogany Field using a shale gouge ratio correlation. The estimated worst-case CO₂ flux is slightly above background range. The flux along fault could be attenuated to zero by permeable layers that intersect the fault. The attenuation is temporary if layers are sealed at other end. Counterintuitively, greater elevation in pressure at the base of the fault can result in less CO₂ leakage at the top of the fault, because the capillary entry pressure is exceeded for more permeable layers. Since non-negligible leakage rates are possible along wellbores, it is important to be able to diagnose whether leakage is occurring. Concurrent pressure and temperature measurements are especially valuable because they independently constrain the effective permeability of a leakage path along wellbore. We describe a simple set of coupled analytical models that enable diagnosis of above-zone monitoring data. Application to data from a monitoring well during two years of steady CO₂ injection shows that the observed pressure elevation requires a model with an extremely large leakage rate, while the temperature model shows that this rate would be large enough to raise the temperature in the monitoring zone significantly, which is not observed. The observation well is unlikely to be leaking. Extraction of brine from the aquifer offers advantage over standard storage procedure by greatly mitigating pressure elevation during CO₂ injection. A proper management of the injection process helps reduce the risk of leakage associated with wellbores and faults. We provide strategies that optimize the injection of CO₂ which involve extraction of brine in two scenarios, namely injecting dissolved CO₂ and supercritical CO₂. For surface dissolution case we are concerned with bubble point contour, while for supercritical CO₂ injection we are concerned with breakthrough of CO₂ at extractors. In a surface dissolution project, the CO₂ concentration front shape when it reaches the saturation pressure contour defines the maximum areal extent of CO₂-saturated brine and hence the aquifer utilization efficiency. We illustrate the reduction of utilization efficiency due to heterogeneity of the aquifer. We develop an optimal control strategy of the injection/extraction rates to maximize the utilization efficiency. We further propose an optimal well pattern orientation strategy. Results show that the approach nearly compensates the reduction of utilization efficiency due to heterogeneity. In a supercritical CO₂ injection that involves brine extraction, the problem of avoiding breakthrough of CO₂ at extraction wells can be addressed by optimizing flow rates at each extractor and injector to delay breakthrough as long as possible. We use the Capacitance-Resistive Model (CRM) to conduct the optimization. CRM runs rapidly and requires no prior geologic model. Fitting the model to data recorded during early stages of CO₂ injection characterizes the connectivities between injection and brine-extraction wells. The fitted model parameters are used to optimize subsequent CO₂ injection in the formation. Field illustration shows a significant improvement in CO₂ storage efficiency. / text
|
6 |
Process Models for CO2 Migration and Leakage : Gas Transport, Pore-Scale Displacement and Effects of ImpuritiesBasirat, Farzad January 2017 (has links)
Geological Carbon Storage (GCS) is considered as one of the key techniques to reduce the rate of atmospheric emissions of CO2 and thereby to contribute to controlling the global warming. A successful application of a GCS project requires the capability of the formation to trap CO2 for a long term. In this context, processes related to CO2 trapping and also possible leakage of CO2 to the near surface environment need to be understood. The overall aim of this thesis is to understand the flow and transport of CO2 through porous media in the context of geological storage of CO2. The entire range of scales, including the pore scale, the laboratory scale, the field experiment scale and the industrial scale of CO2 injection operation are addressed, and some of the key processes investigated by means of experiments and modeling. First, a numerical model and laboratory experimental setup were developed to investigate the CO2 gas flow, mimicking the system in the near-surface conditions in case a leak from the storage formation should occur. The system specifically addressed the coupled flow and mass transport of gaseous CO2 both in the porous domain as well as the free flow domain above it. The comparison of experiments and modelling results showed a very good agreement indicating that the model developed can be applied to evaluate monitoring and surface detection of potential CO2 leakage. Second, the field scale CO2 injection test carried out in a shallow aquifer in Maguelone, France was analyzed and modeled. The results showed that Monte Carlo simulations accounting for the heterogeneity effects of the permeability field did capture the key observations of the monitoring data, while a homogeneous model could not represent them. Third, a numerical model based on phase-field method was developed and model simulations carried out addressing the effect of wettability on CO2-brine displacement at the pore-scale. The results show that strongly water-wet reservoirs provide a better potential for the dissolution trapping, due to the increase of interface between CO2 and brine with very low contact angles. The results further showed that strong water-wet conditions also imply a strong capillary effect, which is important for residual trapping of CO2. Finally, numerical model development and model simulations were carried out to address the large scale geological storage of CO2 in the presence of impurity gases in the CO2 rich phase. The results showed that impurity gases N2 and CH4 affected the spatial distribution of the gas (the supercritical CO2 rich phase), and a larger volume of reservoir is needed in comparison to the pure CO2 injection scenario. In addition, the solubility trapping significantly increased in the presence of N2 and CH4.
|
7 |
Traçage des intrusions de CO2 dans les aquifères d'eau douce par les méthodes multi-isotopiques / Development of indirect indicators for CO2 intrusion into freshwaterHumez, Pauline 20 December 2012 (has links)
Cette étude porte sur l'impact des fuites de CO2 provenant d'un réservoir géologique de stockage de CO2 sur un aquifère d'eau douce. Elle se distingue des autres études, réalisées sur le même thème, par la recherche et l'application, depuis l'échelle du laboratoire jusqu'à celle d'un site pilote, de nouveaux outils de monitoring et d'approche isotopique destinés à la détection précoce de fuite de CO2. Afin de tester ces outils, des échantillons solides et liquides provenant de l'aquifèrestratégique de l'Albien du Bassin de Paris ont été prélevés, analysés et utilisés pour une étude expérimentale en batch. Cette expérience permet de contraindre et de comprendre précisément les interactions eau-roche-CO2 et les réponses isotopiques. Une application grandeur nature en Norvège a permis de mettre en place ce programme isotopique et de suivre l'évolution de la composition isotopique en distinguant les processus et phénomènes naturels et les processus reliés à l'injection de CO2. Ces deux cas d'étude appliqués au contexte de détection de fuite de CO2 ont permis de choisir les outils isotopiques les meilleurs comme indicateurs indirects de la présence de CO2, dans le cas particulier des systèmes étudiés. L'efficience de ces outils isotopiques réside dans l'enregistrement de la trace laissée par la présence de CO2 au cours d'interactions eau/roche/CO2. L'utilisation de tels outils nécessite une méthodologie rigoureuse abordée dans ce manuscrit et nécessite d'être adaptée aux spécificités des sites envisagés. / This study deals with the impact of CO2 leakages out of geological storage into overlying freshwater aquifers. Compared to other existing studies, the major added value of this study lies, on the one hand, in the research of new monitoring tools and isotopic approach in the context of CCS aiming at early and sensitive detection of CO2 leakage and, on the other hand, in the application of these tools at the (limited) laboratory scale as well as at field scale. In order to test these tools, solid and liquid materials were sampled out of the major strategic drinking water Albian aquifer in the Paris Basin (France). We have then precisely characterized and used them within a batch experiment. This experiment yields interesting results which help understanding and constraining precisely the water-rock-CO2 interactions as well as the isotopic responses. A real scale application of the method was then performed in Norway. It was an opportunity to develop this isotopic program and to track the isotopic evolution composition, while differentiating the natural processes and the system response tothe CO2 injection. When applied to the detection of CO2 leakage context, the two case studies open the way for choosing the “best” isotopic tools as indirect indicators of CO2 presence in these specific systems. The efficiency of these isotopic tools comes from the recording of the CO2 footprint all along the water-rock-CO2 interactions. Using such tools imposes a rigorous methodology, which is tackled inthis manuscript. Furthermore, future application will require adapting to the specifics of a proposed site.
|
Page generated in 0.0456 seconds