1 |
Application of Selected-Ion-Flow-Tube Mass Spectrometry For Real-Time Operando Quantitative Measurement of Product Formation for Electrochemical Reduction of Carbon Dioxide / SIFT-MS For Carbon Dioxide Reduction ReactionGibson, Timothy Matthew January 2024 (has links)
Electrochemical CO2 reduction reaction (CO2R) is a promising route to help reduce
greenhouse gas emissions and reach carbon dioxide net zero emissions to combat global
warming. Currently, in order to investigate catalytically produced products from CO2R
offline methods such as gas chromatography (GC) and nuclear magnetic resonance (NMR)
are used. These offline methods have a time resolution on the minutes to hours scale which
leads to uncertainty of evaluating how products are produced from CO2R, such as knowing
if a product is produced from electrochemical means or chemical conversion, and if a
product is being produced in a linear rate of production or a different rate. This is where the
ability to have real-time analysis of the products generated from CO2R is desirable, as it
can more definitively answer many of these questions. Yet few analytical techniques have
been developed in detail so far to achieve real-time analysis. Herein, we show the use of
selected-ion flow-tube mass spectrometry (SIFT-MS) that quantitatively measures in realtime an array of 10 C1, C2, and C3 products from CO2R such as ethanol, ethylene or
methane. The custom-developed SIFT-MS selected ion mode scan measures the
concentration of gas and liquid-phase products of CO2R at the same time and is compatible
with any electrolyzer cell. We demonstrate that the SIFT-MS technique can reliably and
accurately determine product concentration in real-time through the evaluation of Cu foil
and its comparison to traditional techniques. Considering the narrow range of developed
and deployed techniques for real-time quantitative product analysis for CO2R, this study on SIFT-MS is a critical tool for future research in accelerating and optimizing catalyst
design for electrochemical CO2R applications. / Thesis / Master of Applied Science (MASc) / The electrochemical reduction of carbon dioxide can be used within electrolyzer
devices to help mitigate greenhouse gas emissions to combat global warming. The process
is when carbon dioxide is extracted from sources such as industrial plants and undergoes
electrochemical reduction to be converted into 16 or more products that can be then sold
within the market for profit. The common analysis methods currently used to analyze how
much of each product is produced from an electrolyzer device does not reveal all the
information needed to best design electrolyzer devices. This has led way to new analysis
methods that are being explored that can find all the information needed for product
analysis that leads to optimal electrolyzer design. This work investigated uses a special type
of mass spectrometry that will allow for the full information to be found on the products
from electrochemical carbon dioxide reduction leading to enhanced electrolyzer designs.
|
2 |
Nouveaux complexes rhénium(I) tricarbonyles vers des applications en catalyse, photophysique et biologie / Novel rhenium(I) tricarbonyl complexes towards catalytic, photophysical and biological applicationsHe, Menglan 06 May 2019 (has links)
Dans cette thèse, des complexes [Re(N^N)(CO)3X]n+ ont été conçus pour différentes applications. Dans le premier chapitre, l’impact de différentes modifications sur le ligand N^N ou le ligand X sur les propriétés photophysiques des complexes a été étudié. Dans le second chapitre, une série de nouveaux complexes a été conçue et étudiée comme catalyseurs homogènes/hétérogènes pour l’électroréduction du CO2. Dans le dernier chapitre, nous avons introduit un ligand diimine pour la coordination au Re en tant que lien dans la macrocyclisation de peptidomimétiques pour la modulation d’interaction protéine-protéine. / In this thesis, [Re(N^N)(CO)3X]n+ complexes were designed towards different applications. In the first chapter, the impact of different modifications on either the N^N ligand or the X ligand on the photophysical properties were studied experimentally and computationally. In the second chapter, we designed and studied a series of new Re complexes as homogeneous/heterogeneous catalysts for CO2 electroreduction and their catalytic abilities were evaluated. In the last chapter, the introduction of a Re complex as macrocyclic linker in macrocyclic peptidomimetics is used to both stabilize the active secondary structure and introduce imaging modalities towards modulation of protein-protein interactions.
|
3 |
CCS via Electrochemical CO2 Reduction to Ethylene-based Polymeric Construction Materials / CCS via elektrokemisk CO2-reduktion till etenbaserade polymera konstruktionsmaterialTaylor, Christian January 2021 (has links)
IPCC SR15 rapporterade att alla framtida scenarier för att begränsa klimatförändringen till 1,5°C är starkt beroende av negativa utsläppstekniker, såsom geografisk CO2-lagring som används av Stockholm Exergi’s Värtaverket. Men kan man uppnå starkare klimatvinster genom en cirkulär koldioxidekonomi? Bildandet av en cirkulär koldioxidekonomi är absolut nödvändigt för att uppnå global koldioxidneutralitet, men hur kommer vi dit? Elektrolys av CO2 erbjuder en ekonomiskt och miljömässigt attraktiv väg för att uppgradera CO2-utsläpp till värdefulla bränslen och råvaror, vilket minskar användningen av fossila resurser och CO2-utsläpp till atmosfären. Detta examensarbete undersöker möjligheten att ta bort 720 000 ton-CO2-utsläpp från det avfallseldade kraftvärmeverket i Högdalen som fallstudie, via elektrokemisk reduktion av CO2 till eten, med målet att producera polymera konstruktionsmaterial, för att fungera som en kolsänka. Dessa polymerer har utvärderats utifrån kriterier som kapacitet som kolsänka, marknadsstorlek och LCA. Eten är den mest användbara råvarukemikalien för polymerproduktion och har ett betydande koldioxidavtryck på 1,73 ton CO2 per producerade eten. Att använda eCO2RR skulle minska betydande CO2-utsläpp och överbrygga luckan mellan fossila och förnybara resurser. Detta examensarbete föreslår en preliminär processdesign, komplett med en teknoekonomisk modell för att beräkna ekonomin, mass- och energibalanser för ett flertal scenarier. Över hundra elektrokatalysatorer har studerats i en litteraturgenomgång, där 5 st elektrokatalysator har valts ut baserat på olika styrkor i särskilda meritvärden, för att fastställa prestationsmål för lönsamhet. Den teknoekonomiska modellen drog slutsatsen att vid nuvarande prisläge på 700 SEK/MWh kunde ingen av elektrokatalysatorerna uppnå lönsamhet. Att sänka elpriset till LCOE för vindkraft till 335 SEK/MWh, blev resultaten mycket lönsamma, inklusive IRR upp till 41,3%. Modellparametrar ändrades för att fastställa de viktigaste variablerna i en omfattande känslighetsanalys. Vi kan dra slutsatsen att strömtätheter på 400-600 mA/cm2 är gynnsamma och med så låg bibehållen cellspänning som möjligt (<2,4V). Om man specifikt inriktar sig på eten som produkt kan det vara fördelaktigt att ytterligare öka lönsamheten genom att producera myr- eller ättiksyra som ett nästa steg, vilket har fördelen av enklare vätskegasseparering och för att undvika produktion av metan och etanol. För lönsamhet krävs en livstid på minst 2-4 år för elektrokatalysatorn (CCM), 10 år för stacken och 20 år för elektrolyssystemet. I miljöanalysen studerades massbalans-lagringen av CO2. Detta uppnåddes genom att ta bort de direkta utsläppen från Högdalenverket. De indirekta utsläppen förhindrades genom att ersätta konventionella processer av elkällans kolintensitet. Baserat på genomsnittet av elektrokatalysatorerna skulle värdlandet behöva kräva en kolintensitet för elproduktionen under 101 och 153 tCO₂/GWh för NET-direkt respektive indirekt CO2-avlägsnande. Följaktligen kan högre CO2-besparingar uppnås genom handel med koldioxidsnål svensk el till grannländer med mycket högre koldioxidintensitet. Totalt sett var den direkta koldioxidminskningen mellan 487 300 till 575 000 ton CO₂ och en indirekt minskning på mellan 1 065 000 till 1 219 000 ton CO₂, beroende på energieffektivitet och produkter. Den största utmaningen för kommersiell framgång för alla eCO2RR-projekt bortsett från de tekniska prestandaaspekterna är att nödvändiga förändringar i skatteregelverket behövs, så att el från elektrolysprojekt till gröna kemikalier blir skattebefriade, som jämförbart med förbränning av förnybar biomassa är befriad från CO2-skatter. / The IPCC SR15 reported that all future scenarios to limit climate change to 1.5°C are heavily reliant on negative emission technologies, such as geographical CO2 storage employed by Stockholm Exergi’s Värtaverket. But can stronger climate benefits be achieved through a circular carbon economy? The formation of a carbon circular economy is imperative towards achieving global carbon neutrality, but how do we get there? Electrolysis of CO2 offers an economically and environmentally attractive route to upgrade CO2 emissions to valuable fuels and feedstocks, thus reducing the use of fossil resources and CO2 emissions to the atmosphere, hence closing the cycle. This thesis explores the possibility of removing the 720,000 tCO2 emissions of the case study waste-fired CHP plant, Stockholm Exergi’s Högdalenverket, via the electrochemical reduction of CO2 (eCO2RR) towards ethylene, with the goal of producing polymeric construction materials, to act as a carbon sink. These polymers were evaluated on criteria such as, capacity as a carbon sink, market size and LCA. Ethylene is the prevailing commodity chemical for polymer production and has a significant carbon footprint of 1.73 tonCO2 per tonne of ethylene produced. Displacement via the eCO2RR would prevent substantial CO2 emissions and bridge the gap between fossil and renewable resources. This thesis describes a preliminary process design, complete with technoeconomic model to calculate the economics, mass and energy balances of numerous scenarios. Electrocatalyst data from an in-depth literature review comprising of over 100 catalysts was drawn, with 5 electrocatalyst candidates selected based on strengths in particular figures of merit, to determine performance targets for profitability. The technoeconomic model concluded that at the current price point of 700 SEK/MWh, none of the electrocatalysts could achieve profitability. Lowering the electricity price to the levelized-cost of electricity (LCOE) for wind, 335 SEK/MWh, yielded highly profitable results, including IRR up-to 41.3%. Model parameters were changed to determine the most important variables in an extensive sensitivity analysis. Concluding that performance targets require current densities of 400-600 mA/cm2 whilst maintaining as low cell voltage as possible (<2.4 V). When specifically targeting ethylene, it is beneficial to increase profitability through targeting more valuable, formic, or acetic acid, which has the advantage of easier liquid-gas separation and to avoid production of methane and ethanol. For stability, 2-4 years minimum is required for the catalyst-coated membrane (CCM), 10 years for the stack and 20 years for the electrolyser systems. In the environmental analysis, capabilities for carbon storage were studied via CO2 balance. This was achieved by taking the direct emissions removed from Högdalenverket, the indirect emissions prevented by replacing conventional processes and by the carbon intensity of the electricity source. Based on the average energy efficiency and performance of the electrocatalysts, the host country would require a carbon intensity of electricity production below 101 and 153 tCO₂/GWh for NET direct and indirect CO2 removal, respectively. Consequently, higher CO2 savings were achieved by trading low-carbon Swedish electricity to neighbouring countries with much higher carbon intensities. Overall, the direct carbon reduction was between 487,300 to 575,000 tCO₂ and indirect reduction of between 1,065,000 to 1,219,000 tCO₂, subject to energy efficiency and targeted products. It remains that aside from the technical performance aspects of the eCO2RR catalysts, the major roadblock towards the commercial success of all eCO2RR projects is the required adjustments to regulatory framework, such that electricity for electrolysis projects towards green chemicals exempt from taxes in a similar way to renewable biomass combustion exempt from CO2 taxes.
|
Page generated in 0.0951 seconds