• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow Subsurface

Yordkayhun, Sawasdee January 2008 (has links)
Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO2) geological storage site at Ketzin, Germany (the CO2SINK project). Conventional seismic methods that focused on investigating the CO2 storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis. Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition. For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.
2

2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow Subsurface

Yordkayhun, Sawasdee January 2008 (has links)
<p>Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO<sub>2</sub>) geological storage site at Ketzin, Germany (the CO<sub>2</sub>SINK project). Conventional seismic methods that focused on investigating the CO<sub>2</sub> storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis.</p><p>Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition.</p><p>For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.</p>
3

Seismic Investigations at the Ketzin CO2 Injection Site, Germany: Applications to Subsurface Feature Mapping and CO2 Seismic Response Modeling

Kazemeini, Sayed Hesammoddin January 2009 (has links)
3D seismic data are widely used for many different purposes. Despite different objectives, a common goal in almost all 3D seismic programs is to attain better understanding of the subsurface features. In gas injection projects, which are mainly for Enhanced Oil Recovery (EOR) and recently for environmental purposes, seismic data have an important role in the gas monitoring phase. This thesis deals with a 3D seismic investigation at the CO2 injection site at Ketzin, Germany. I focus on two critical aspects of the project: the internal architecture of the heterogeneous Stuttgart reservoir and the detectability of the CO2 response from surface seismic data. Conventional seismic methods are not able to conclusively map the internal reservoir architecture due to their limited seismic resolution. In order to overcome this limitation, I use the Continuous Wavelet Transform (CWT) decomposition technique, which provides frequency spectra with high temporal resolution without the disadvantages of the windowing process associated with the other techniques. Results from applying this technique reveal more of the details of sand bodies within the Stuttgart Formation. The CWT technique also helps to detect and map remnant gas on the top of the structure. In addition to this method, I also show that the pre-stack spectral blueing method, which is presented for the first time in this research, has an ability to enhance seismic resolution with fewer artifacts in comparison with the post-stack spectral blueing method. The second objective of this research is to evaluate the CO2 response on surface seismic data as a feasibility study for CO2 monitoring. I build a rock physics model to estimate changes in elastic properties and seismic velocities caused by injected CO2. Based on this model, I study the seismic responses for different CO2 injection geometries and saturations using one dimensional (1D) elastic modeling and two dimensional (2D) acoustic finite-difference modeling. Results show that, in spite of random and coherent noises and reservoir heterogeneity, the CO2 seismic response should be strong enough to be detectable on surface seismic data. I use a similarity-based image registration method to isolate amplitude changes due to the reservoir from amplitude changes caused by time shifts below the reservoir. In support of seismic monitoring using surface seismic data, I also show that acoustic impedance versus Poisson’s ratio cross-plot is a suitable attribute for distinguishing gas-bearing sands from brine-bearing sands. / CO2SINK Project

Page generated in 0.0292 seconds