11 |
Estimação da causalidade de Granger no caso de interação não-linear. / Nonlinear connectivity estimation by Granger causality technique.Massaroppe, Lucas 08 August 2016 (has links)
Esta tese examina o problema de detecção de conectividade entre séries temporais no sentido de Granger no caso em que a natureza não linear das interações não permite sua determinação por meio de modelos auto-regressivos lineares vetoriais. Mostra-se que é possível realizar esta detecção com auxílio dos chamados métodos de Kernel, que se tornaram populares em aprendizado por máquina (\'machine learning\') já que tais métodos permitem definir formas generalizadas de teste de Granger, coerência parcial direcionada e função de transferência direcionada. Usando simulações, mostram-se alguns exemplos de detecção nos quais fica também evidente que resultados assintóticos deduzidos originalmente para estimadores lineares podem ser generalizados de modo análogo, mostrando-se válidos no presente contexto kernelizado. / This work examines the connectivity detection problem between time series in the Granger sense when the nonlinear nature of interactions determination is impossible via linear vector autoregressive models, but is, nonetheless, feasible with the aid of the so-called Kernel methods that are popular in machine learning. The kernelization approach allows defining generalised versions for Granger tests, partial directed coherence and directed transfer function, which the simulation of some examples shows that the asymptotic detection results originally deducted for linear estimators, can also be employed under kernelization if suitably adapted.
|
12 |
Estimação da causalidade de Granger no caso de interação não-linear. / Nonlinear connectivity estimation by Granger causality technique.Lucas Massaroppe 08 August 2016 (has links)
Esta tese examina o problema de detecção de conectividade entre séries temporais no sentido de Granger no caso em que a natureza não linear das interações não permite sua determinação por meio de modelos auto-regressivos lineares vetoriais. Mostra-se que é possível realizar esta detecção com auxílio dos chamados métodos de Kernel, que se tornaram populares em aprendizado por máquina (\'machine learning\') já que tais métodos permitem definir formas generalizadas de teste de Granger, coerência parcial direcionada e função de transferência direcionada. Usando simulações, mostram-se alguns exemplos de detecção nos quais fica também evidente que resultados assintóticos deduzidos originalmente para estimadores lineares podem ser generalizados de modo análogo, mostrando-se válidos no presente contexto kernelizado. / This work examines the connectivity detection problem between time series in the Granger sense when the nonlinear nature of interactions determination is impossible via linear vector autoregressive models, but is, nonetheless, feasible with the aid of the so-called Kernel methods that are popular in machine learning. The kernelization approach allows defining generalised versions for Granger tests, partial directed coherence and directed transfer function, which the simulation of some examples shows that the asymptotic detection results originally deducted for linear estimators, can also be employed under kernelization if suitably adapted.
|
Page generated in 0.0133 seconds