• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1121
  • 367
  • 346
  • 207
  • 134
  • 70
  • 52
  • 41
  • 32
  • 21
  • 17
  • 15
  • 14
  • 12
  • 11
  • Tagged with
  • 2992
  • 543
  • 339
  • 248
  • 234
  • 164
  • 161
  • 160
  • 154
  • 134
  • 124
  • 121
  • 119
  • 117
  • 111
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Catalytic conversion of biomass-derived oils to fuels and chemicals

Adjaye, John Deheer 25 March 2009 (has links)
Experimental and kinetic modeling studies were carried out on the conversion a wood-oil obtained from high pressure liquefaction of aspen poplar wood to liquid hydrocarbon fuels and useful chemicals in a fixed bed micro-reactor using HZSM-5 catalyst. Similar experiments were conducted using silicalite, H-mordenite, H-Y and amorphous silica-alumina catalysts. <p> Preliminary vacuum distillation studies showed that the wood-oil was made up of volatile and non-volatile fractions. A maximum yield of 62 wt% volatiles at 200 °C, 172 Pa was obtained. The volatile fraction consisted of over 80 compounds. These compounds were comprised of acids, alcohols, aldehydes, ketones, esters, ethers, furans, phenols and some hydrocarbons. The characteristics of the oil showed that it was unstable with time, i.e., its physical properties and chemical composition changed with time probably due to the reaction of free radicals or the oxidative coupling of some of the wood-oil components. However, when the oil was mixed with tetralin, the stability improved. <p> Upgrading studies were first conducted over inert berl saddles in the presence and absence of steam (i. e. non-catalytic treatment/blank runs). Yields of hydrocarbons were between 16 and 25 wt% of the wood-oil. High residue fractions of between 32 to 56 wt% were obtained after processing. Some portions of wood-oil formed a carbonaceous material (char or coke) when exposed to the experimental temperatures. The chars (coke) fraction increased with temperature from 4.7 to 12.5 wt% when processing with steam and 8.0 to 20.4 wt% when processing without steam. <p> Catalytic upgrading studies were first carried out using HZSM-5 catalyst in the presence and absence of steam. The results showed that approximately 40 to 65 wt% of the oil could be converted to a hydrocarbon-rich product (i.e. desired organic liquid product (distillate). This contained about 45 to 70 wt% hydrocarbons with selectivities ranging between 0.47 to 0.88. This fraction was highly aromatic in nature and consisted mainly of benzene, toluene, xylene (BTX compounds) and other alkylated benzenes within the gasoline boiling point range. The yield and selectivities were strong functions of the process time and temperature. A comparison between the two processes, i.e. upgrading in the presence and absence of steam, showed that about 30 to 45 % reduction in coke formation and 5 to 18 wt% increase in organic distillate could be achieved when processing in the presence of steam. These changes were probably due to changes in the rates of cracking, deoxygenation, aromatization and polymerization reactions resulting from the competitive adsorption processes between steam and wood-oil molecules in addition to changes in contact time of molecules. However, the selectivity for hyqrocarbons decreased in the presence of steam. <p> Yields of organic distillate fractions of between 72 to 93 wt% and hydrocarbon yields and selectivities of 44 to 51 wt% and 0.93 to 1.13, respectively, were obtained when wood-oil volatile fraction was upgraded over HZSM-5 after separation from the non-volatile fraction by vacuum distillation. <p> The spent HZSM-5 catalyst could be easily regenerated and reused with little change in its performance. <p> The yields and selectivities for hydrocarbons when upgrading with the other catalysts were between 9 and 22 wt%, and 0.12 and 0.29, respectively for silicalite, 16 and 28 wt%, and 0.22 and 0.28, respectively for H-mordenite, 15.5 and 21 wt%, and 0.17 and 0.21, respectively for H-Y and S.5 and 26.2, and 0.13 and 0.36, resrectively for silica-alumina. Compared to HZSM-5 (yield between 34 and 43 wt%, selectivity of 0.66 to O.SS) these yields and selectivities were much lower. These experiments also showed that the pore size, acidity and shape selectivity of the catalyst influenced the distribution of hydrocarbons in terms of the carbon number. The yield and selectivity of H-mordenite and H-Y (large pore zeolites) were mostly for kerosene range hydrocarbons (C<sub><font size=2>9</font></sub> to C<sub><font size=2>15</font></sub>) and for silicalite and HZSM-5 (medium pore zeolites) for gasoline range hydrocarbons. The hydrocarbon fraction from amorphous silica-alumina did not show any defined distribution. The performance followed the order: HZSM-5> H-mordenite> H-Y> Silicalite, Silica-alumina.<p> With the aid of model compound reactions involving acetic acid methyl ester, propanoic acid, 4-methylcyclohexanol, methylcyclopentanone, 2-methylcyclopentanone, methoxybenzene, ethoxybenzene, phenol, 2-methoxy-4-(2-propenyl) phenol, a synthetic and wood-oil volatile, two reaction pathways were proposed to explain the chemical steps through which the final products of upgrading were obtained. Also, reaction pathways were proposed for each chemical group. These experiments showed that the final products were formed probably through cracking, deoxygenation, olefin formation, oligomerization, hydrogen and hydride transfer, cyclization, isomerization, alkylation and polymerization reactions. <p> Rate models were derived based upon the two reaction pathways and the power law rate model. The rates of formation of products followed the general order: Organic distillate> Hydrocarbons> Residue> Coke> Gas >Aqueous Fraction. Estimates of the values of the kinetic parameters showed that the rate constants ranged between 10<sup><font size=2>-6</font></sup> (aqueous fraction) and 1.81 (volatile fraction), activation energies between 6.7-76.0 x 10<sup><font size=2> 3</font></sup> KJ/Kmol and reaction orders from 0.7 (gas formation) to 2.5 (residue formation). Two mathematical models were derived based on the integral reactor design equation and on the two reaction pathways. This was used to estimate the yield of products. The models predicted the experimental results fairly accurately. Model discrimination showed that the model based on coke and residue formation from both volatile and non­-volatile fractions of the wood-oil best predicted the experimental results.<p> Hydrocarbon selectivity relations which were based on coke, residue and combined coke and residue as undesired products were also derived. Application of these relations showed that lower temperatures and concentrations were most appropriate for higher hydrocarbon selectivity. However, this was at the expense of higher conversions.
142

Simulation and Measurement of Wavelength Conversion Using Periodically Poled Lithium Niobate Crystal Fiber

Lin, Der-Fong 12 July 2006 (has links)
Blue/Green lasers can be applied in a wide range such as high-density optical storage, display, biomedical analysis and under water communications. C-band wavelength conversion is one of the most key technologies in DWDM system. Optical Wavelength converter using nonlinear effect can provide high transparency, subcarrier-multiplexed channels and can be fused easily and directly with optical fiber. These characteristics have more advantages than those of O/E/O methods. In this thesis, periodically poled LiNbO3 (PPLN) crystal fiber for wavelength conversion is grown by LHPG method with high-electric-field bias. The relationship between the polarization inversion and micro-swing is analyzed. For different applications, PPLN crystal fiber need appropriate pitches of polarization inversion to meet quasi phase matching. For example, domain period of 15.45 um is used for tunable blue/green lasers. By means of cascaded SHG/SFG effect, when fundamental power is 100 mW, the internal conversion efficiency of SHG and cascaded SHG/SFG were -9.2 dB and -31.9 dB respectively. The SHG 3-dB bandwidth is 9 nm. While the domain pitch varies from 16.79 um to 25.79 um with 30 nm periodic increment , the simulation shows that the cascaded SHG/SFG 3-dB bandwidth is 65 nm in the range of 1476-1672 nm for fundamental wavelength. Domain period of 18.9 um is used for C-band wavelength converter. By means of cascaded SHG/DFG effect, when the crystal length is 1.8 mm, the effective nonlinear coefficient is 18.2 pm/V, which is 83 % of theoretical value. Conversion efficiency is about -59.3 dB when fundamental power and signal power were 350 mW and 15 mW, respectively.
143

A Study of Sulfide Conversion Process of CuInSe2

Liu, Chun-Ping 25 August 2006 (has links)
Thin films of CuInSe2 can be completely converted into CuInS2 after annealing in elemental sulfur vapor. In this thesis, the sulfide conversion process was done in an MBE chamber and the film was exposed to a heated sulfur source. Our experiments showed that complete conversion of a 1.0 £gm-thick CuInSe2 film into CuInS2 was achieved when the film was annealed in a sulfur beam flux of 4.5x1016 atoms/cm2-sec at 450¢J for 5 minutes. This is the shortest conversion time ever reported for the same annealing temperature. The speed of conversion process depended on sulfur vapor flux, film crystallinity, and original film composition. Among them, the film composition was the most important factor. The presence of Cu2Se phase in Cu-rich CuInSe2 film enhances the sulfide conversion process and confirmed by KCN etching of a Cu-rich sample. The role of Cu2Se phase in sulfide conversion was investigated. The sulfide conversion mechanism also presented in this work.
144

An aid to convert spreadsheets to higher quality presentations

Olajide, Wasiu Olaniyi 29 August 2005 (has links)
A table is often the preferred medium for presenting quantative information. In some cases the presentation of quantative information can be presented as textual data or graphics at a loss of precision and clarity. The subject of this thesis is to aid the extraction and production of quality tables from a common means of preparing data in tabular form, the spreadsheet. Spreadsheet processors are in common use. Many tables are prepared by a range of users from the na??&#305;ve users to experts in graphic arts. Spreadsheet data is also produced in automatic form from applications. We will review the speci&#64257;cation of tabular data, presentation formats, and the systems and their associated formats for storing and interchange of data. The goal of this research is the speci&#64257;cation and development of a system to convert common spreadsheet data to a markup language that will allow for presentation of the data at a higher level of typographic excellence. The desired characteristics of this system will include 1. Robust importing of data from an array of commercial and open spreadsheet processors 2. Formatting decisions of the output speci&#64257;ed by the user rather than taken from the spreadsheet 3. Development or identi&#64257;cation of a canonical form that is robust, does not lose data, and allows for repeated automatic application of styles 4. Development of a program to convert this canonical form into a markup system.
145

Genetic diversity and combining ability among sorghum conversion lines

Mateo Moncada, Rafael Arturo 25 April 2007 (has links)
Sorghum (Sorghum bicolor [L] Moench) was first introduced to the United States in the 1800s. These introductions consisted of tropical varieties with a short day photoperiod response that limited their use in temperate hybrid breeding programs. Commercial exploitation of F1 hybrids in grain sorghum started by the mid 1950s with the use of cytoplasmic male sterility system CMS (A1). Even though other CMS are available, most sorghum hybrid seed production still relies on the A1 system. Genetic gain in most agronomic crop species is limited by several factors. In the specific case of sorghum, the uniform use of the CMS (A1) system and the recent introduction of sorghum to the United States have resulted in a reduction of its genetic base. In order to create enough genetic variability, plant breeders might utilize exotic non adapted material, exotic adapted material or existing elite material as a source of new alleles that will protect and improve genetic gain through selection. This study provides an estimate of the genetic diversity existing in a set of sorghum conversion lines. The objectives of this study were: (1) to estimate the genetic diversity present among a set of 16 sorghum conversion lines; (2) to classify this set of lines based on genetic similarities estimated using AFLP markers and (3) to estimate heterosis, general and specific combining ability for grain yield among the set of conversion lines. Genetic diversity was present in the set of conversion lines evaluated. For the lines included only in this study, Caudatum was the most homogenous race (average GS = 0.69), and this race was closely related to the Durra race (Average GS = 0.66). Two other homogenous races were Bicolor and Kafir with average GS of 0.67. Highest GCA effects were obtained from the Kafir and Caudatum races. Good heterotic responses were obtained from DurraKafir races and CaudatumKafir races. Estimation of SCA, MPH and BPH identified specific crosses that were numerically superior than those of the checks. The use of AFLP markers allowed the identification of five strong clusters through estimates of genetic similarities. This classification did not group the lines by either their genetic background or their fertility reaction. This study provides information to identify specific combinations that would help to understand heterotic relationships in sorghum, and support the suggestions made by Menz and Gabriel that races in sorghum are not well defined.
146

Measurement of high voltage using Rutherford backscattering spectrometry

Abrego, Celestino Pete 25 April 2007 (has links)
A novel variation of Rutherford Backscattering Spectrometry (RBS) has been utilized to measure a high voltage collected on an aluminum target by Direct Energy Conversion. The maximum high voltage on the target was measured to be 97.5 kV +/- 2 kV. The resistance of the circuit was then calculated based on the current driving different target voltages. The resistance was calculated to be 199.4GΩ +/- 5%. It was shown that by simply measuring the neutral particles’ energy spectra, the voltage on the target and resistance of the circuit can be found with certainty. The experimental data agree well with previous work and with the scattering theory developed. Thus, the capability of RBS has been extended to measure high voltages generated by direct energy conversion; this is something that has not been done before.
147

Conception en génie électrique à l'aide d'éléments caractérisés

Demni, Houssem Eddine Piquet, Hubert. January 2005 (has links)
Reproduction de : Thèse de doctorat : Génie Électrique : Toulouse, INPT : 2004. / Titre provenant de l'écran-titre. Bibliogr. 45 réf.
148

Sensible exercises of the soul : a study of conversion in Jonathan Edwards /

Pipes, Elizabeth. January 2001 (has links)
Thesis (M.A.)--Wheaton College Graduate School, 2001. / Includes bibliographical references (leaves 126-128).
149

Analysis of amorphous thin-film tandem solar cells and their component layers

Ibrahim, Kamarulazizi January 1989 (has links)
No description available.
150

AC mains voltage regulation by solid-state power conversiontechniques

侯經權, Hau, King-kuen. January 1990 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy

Page generated in 0.0233 seconds