1 |
Application of transition metal-mediated conjugate addition reactions to the synthesis of novel anti-tumour agentsChristou, Stephania January 2014 (has links)
The Streptomyces metabolite 2-crotonyloxymethyl-(4R,5R,6R)-4,5,6-trihydroxycyclohex-2-enone (COTC), the antheminones and the carvotacetone derivatives are all bioactive natural products, whose structure is based on the α oxymethyl-a,β-cyclohexenone moiety. Both COTC and antheminone A have been shown to exhibit cytotoxic and cancerostatic activity with low toxicity. The potent biological activity of these natural products has instigated numerous investigations into the synthesis of novel analogues in an attempt to determine the key structural features necessary for optimum bioactivity. The synthesis of a small library of novel anti-tumour agents which are structurally related to the natural products COTC and antheminone A is described, using the chiral pool material (-)-quinic acid as a starting material. At the outset, the aim of this project was to develop and optimise copper-mediated conjugate addition reactions and rhodium catalysed conjugate addition reactions of organoboron reagents to functionalised cyclic enones and subsequently, to apply the methodologies to the synthesis of the novel analogues. A range of novel mono-hydroxylated analogues bearing aryl side chains were prepared and their antiproliferative activity was assessed towards the A549 non-small cell cancer cell line. The biological assays revealed important structure-activity relationships and the most bioactive compound of this series had an IC50 value of 1.2 µM. In addition, the design and synthesis of a new class of GSH-activated prodrugs is described. These novel compounds are activated by GSH leading to intracellular release of an NQO1 inhibitor. The most potent compound of this new class of compounds had an IC50 value of 710 nm.
|
2 |
Investigation of a synthetic approach to polyfunctionalised cyclohexenones related to the antheminone and carvotacetone natural productsWilliams, Katharine January 2012 (has links)
The natural product 2 crotonyloxymethyl-(4R,5R,6R)-4,5,6-trihydroxy-cyclohex-2-enone (COTC) was isolated from the microorganism Streptomyces griseosporeus in 1975. It was shown to exhibit 'cytotoxic and cancerostatic activity'. The simplified synthetic analogue 2-crotonyl-oxymethyl-cyclohex-2-enone (COMC) has been shown to exhibit potent anti tumour activity against murine and human tumours in cell culture. For several years, the Whitehead research group at the University of Manchester have focused on the synthesis of COTC and COMC analogues in an attempt to produce compounds with enhanced cytotoxicity. In this thesis, the syntheses of several polyfunctionalised cyclohexenones are described. These compounds are analogues of COTC and COMC which also bear structural resemblance to the antheminone and carvotacetone natural products. Initially, the syntheses of six novel compounds from the chiral pool starting material (-)-quinic acid are described. The first four synthetic steps of each sequence were carried out by slight modification of procedures previously reported by the Whitehead research group. As part of the synthetic strategy, the diastereoselective conjugate addition of carbon nucleophiles to several polyfunctionalised cyclohexenones was investigated. The cytotoxicity of four of the synthetic analogues towards A549 non small cell lung cancer cells was investigated by use of an MTT assay. Two of the analogues were found to be more cytotoxic then COMC. The most effective synthetic analogue had an IC50 value of 2.2 μM. This analogue was more cytotoxic than similar molecules that had previously been synthesised by members of the Whitehead research group. Based on the results of the MTT assay, another two analogues were designed and their synthesis from (-)-quinic acid is described. The cytotoxicity of these analogues has yet to be assessed. In summary, the general synthetic strategies developed in this thesis will provide easy access to new analogues of the natural products, enabling the development of new cytotoxic compounds.
|
3 |
Effect of CTCF and Cohesin on the dynamics of RNA polymerase II transcription and coupled pre-messenger RNA processingLiska, Olga January 2013 (has links)
The CCCTC-binding factor (CTCF) is a versatile, multifunctional zinc-finger protein involved in a broad spectrum of cellular functions. In mammalian cells, CTCF functions together with the Cohesin complex, an essential regulator of sister chromatid cohesion. Together, CTCF and Cohesin have been shown to regulate gene expression at a genome-wide level in mammalian cells. In the yeast Saccharomyces pombe, Cohesin has been implicated in transcription termination of convergently transcribed genes, in a cell cycle dependent manner. The aim of this thesis was to investigate the possibility of direct transcriptional involvement of CTCF and Cohesin in human cells. The first model system applied for this experimental purpose was the β-globin gene with introduced canonical CTCF-binding sites replacing the endogenous Co- Transcriptional Cleavage (CoTC) element downstream of β-globin. The results obtained indicate that recruitment of CTCF to the β-globin 3` flanking region does not prevent read-through transcription. However, CTCF-binding does mediate RNA Polymerase II (Pol II) pausing at the site of recruited CTCF. This results in more efficient pre-mRNA 3` end processing and therefore rescues β-globin mRNA to wild type levels. Cohesin was not detected at the introduced CTCF-binding sites. These results are a contribution to our understanding of the spatio-temporal requirements for cotranscriptional events like 3` end pre-mRNA processing and Pol II kinetics. The second part of my thesis presents an investigation on the involvement of CTCF and Cohesin in lipopolysaccharide (LPS)-induced Tumor Necrosis Factor α (TNFα) gene expression regulation in human monocytes and differentiated M1- and M2-type macrophages. These studies provide first evidence of Cohesin recruitment to the TNFα gene body and its regulatory NFκB-binding sites. Differences in the recruitment profiles obtained indicate potential regulatory differences of TNFα among the three cell types. Preliminary data provide an insight into the effects on TNFα mRNA levels upon down-regulation of Cohesin subunits.
|
4 |
Wartime Training at Canadian Universities during the Second World WarMillar, Anne January 2015 (has links)
This dissertation provides an account of the contributions of Canadian universities to the Second World War. It examines the deliberations and negotiations of university, government, and military officials on how best to utilize and direct the resources of Canadian institutions of higher learning towards the prosecution of the war and postwar reconstruction. During the Second World War, university leaders worked with the Dominion Government and high-ranking military officials to establish comprehensive training programs on campuses across the country. These programs were designed to produce service personnel, provide skilled labour for essential war and civilian industries, impart specialized and technical knowledge to enlisted service members, and educate returning veterans. University administrators actively participated in the formation and expansion of these training initiatives and lobbied the government for adequate funding to ensure the success of their efforts. This study shows that university heads, deans, and prominent faculty members eagerly collaborated with both the government and the military to ensure that their institutions’ material and human resources were best directed in support of the war effort and that, in contrast to the First World War, skilled graduates would not be heedlessly wasted. At the center of these negotiations was the National Conference of Canadian Universities, a body consisting of heads of universities and colleges from across the country. This organization maintained an active presence in all major deliberations and exercised substantial influence over the policies affecting the mobilization of university resources.
|
Page generated in 0.0227 seconds