• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 612
  • 390
  • 129
  • 74
  • 66
  • 63
  • 12
  • 10
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1684
  • 607
  • 317
  • 261
  • 223
  • 210
  • 208
  • 206
  • 204
  • 155
  • 146
  • 138
  • 130
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Land Cover as a Predictor of Safe Drinking Water Act Violations in Central Appalachia

Smith, Ethan Pace 09 June 2020 (has links)
Thousands of communities across the nation are exposed to health risks from contaminated drinking water. Upstream anthropogenic land covers have been linked with the degradation of source drinking water quality and likely pose a threat to a community water system's (CWS's) ability to provide safe drinking water. The goal of this study was to predict the differences in compliance with the Safe Drinking Water Act (SDWA) between CWSs based on their upstream land cover, economic situation, and system characteristics. In Central Appalachia, from 2001 to 2016, proportions of land cover in each target CWS's upstream source water watershed were weighted based on their distance to a CWS's source water intake. Violations to the SDWA at respective CWSs over the same period were modeled with their distance weighted land cover proportions, economic status of the county served, and system characteristics as covariates. The major findings were that increases in low intensity development increased the likelihood of a health-based violation, larger CWSs were less likely than smaller CWSs to obtain a monitoring and reporting violation, and CWSs that distributed purchased water were the least likely to incur either violation type. These results suggest that communities that have CWSs that are repeatedly failing to remain in compliance with the SDWA may be able to reduce public health risks associated with drinking water by purchasing from a larger CWS. Further to protect public health, community managers should consider source water protection and/or upgrading a CWS's treatment capacity prior to developing a previously undeveloped area. / Master of Science / Millions of people across the nation face health risks from contaminated drinking water. Understanding what factors influence a community water system's ability to supply safe drinking water is critical in the effort to protect public health. Land cover altered by humans has been found to pollute drinking water sources and may be linked to unsafe drinking water. This study aims to predict the differences in compliance with the Safe Drinking Water Act (SDWA) between community water systems (CWSs) based on their upstream land cover, economic situation, and system characteristics. In Central Appalachia, proportions of land cover between 2001 and 2016 were calculated for each target CWS's upstream source water watershed. Violations to the SDWA were used in a statistical analysis with land cover, economic status of the county served, and system characteristics of respective CWSs. The major findings were that increases in low intensity developed area increased the likelihood of health-based (HB) violations, larger CWSs were more likely than smaller CWSs to monitor and report their water quality, and CWSs that served purchased water were the least likely to have a HB or monitoring and reporting violation. These results suggest that purchasing drinking water from a larger CWS may allow water providers to reduce the risk to public health from unsafe drinking water. Additionally, protecting drinking source water and/or upgrading a CWS's treatment ability prior to developing a previously undeveloped area may reduce threats to drinking water safety.
102

The effects of cover crops and reduced tillage practices on soil moisture, cotton yield, irrigation water use, and profitability

Roberts, Carson David 10 May 2024 (has links) (PDF)
Aquifer resources in the mid-southern USA are declining because of irrigation water use in row crops. This study assesses the effectiveness of conservation tillage and cover cropping systems in reducing irrigation water use while improving or maintaining cotton yield and profitability. The effects of different tillage and cover crop cropping systems on soil moisture, irrigation water use, cotton yield, and profitability were investigated near Stoneville, MS on a Dubbs silt loam (fine-silty, mixed, active, thermic Typic Hapludalfs) and a Bosket very fine sandy loam (fine-loamy, mixed, active, thermic Mollic Hapludalfs). Reducing tillage reduced irrigation water use by 3.3 cm ha-1, and adding cover crops to conservation tillage practices further reduced irrigation water use to nearly zero (0.5 cm ha-1). Before irrigation, the conventionally-tilled soils had at least 59% greater soil tension (less soil moisture; P>F = 5.41×10-8) than all other conservation practices. Soil moisture was higher where cover crops were sown (20 kPa) than where treatments were winter fallowed (34 kPa). Prescribed irrigation to replenish treatments that reached the irrigation threshold (80 kPa) did not change the trend in soil moisture among treatments. The use of any conservation practice improved season-long soul moisture by at least 19 kPa (P>F = 3.8×10-12). Cover crops infiltrated 13% (P>F = 0.003) more rainwater than winter fallow, and subsoiling improved precipitation infiltration by 16% over non-subsoiled systems (P>F = 0.009). Lint yields were similar across all treatments in 2021 and 2022, but they were 222 kg ha-1 less (P>F = 0.029) in treatments with a cover crop than the control in 2023. The lowest costs acre-1 were realized when the no-seedbed-tillage with winter fallow treatment was used. Utilizing a cover crop reduced irrigation expenses by $7.40 acre-1 compared to the conventionally-tilled control. However, gross returns were reduced by $113 acre-1 where cover crops were sown and reduced overall net returns by $201 acre-1. The strip-tillage and no-seedbed tillage systems with winter fallow reduced overall risk of production when compared to the conventional control and treatments with a cover crop. Conservation systems successfully reduced irrigation water use, but systems with a cover crop may not be economically viable because of low yields and high costs.
103

Factors affecting the nutritional composition and digestibility of corn for silage: Cover crops and cell wall composition

Brown, Alston Neal 15 September 2017 (has links)
Corn silage is one of the major components in dairy cattle rations in the United States. Many factors affect the nutritional composition of corn for silage, such as cropping system, including cover crops, and the composition of the corn plant cell wall. The objectives of the first study were to determine the nutritional quality of different winter crops for silage and to determine the impact of the various winter crops on the succeeding productivity of corn and sorghum. Experimental plots were planted with 15 different winter crop treatments: 5 winter annual grasses in monoculture or with one of two winter annual legumes (crimson clover [CC] and hairy vetch [HV]). After harvesting the winter crops, each plot was planted with either corn or forage sorghum. Crimson clover increased DM yield compared to monocultures but HV did not. Adding legumes increased the crude protein concentration, but reduced the fiber and sugar concentrations of the forages. Even though in vitro neutral detergent fiber digestibility was reduced with the addition of legumes, the concentration of highly digestible non-fibrous components is greater in the mixtures than the monocultures, increasing the nutritive value of the silage. The objective of the second study was to determine the cell wall (CW) composition along the corn stalk. Three phytomers of corn plants were examined: center (C) of ear insertion, upper (U) and lower (L) phytomers. Each phytomer was cut into 4 sections: top (T), middle (M), bottom (B), and node (N). The CW, uronic acid (UA), glucose (GLU), and lignin concentrations did not change among phytomers. The concentrations of arabinose (ARA) and xylose (XYL) were greater in the U than in the L phytomers. Concentrations of CW, ARA, and XYL increased from B to T within the phytomer, but UA and GLU concentrations decreased from B to T. Lignin did not change within the phytomer. In mature corn for silage, changes within the corn internode may be more useful in determining how the environment changes the CW. / Ph. D. / Corn silage is one of the major components in dairy cattle rations in the United States. Many factors can affect the nutritional composition and digestibility of corn for silage, including the crops planted before the corn and the maturity of the corn. I first explored the nutritional quality and potential of different winter crops for use as silage and how these various winter crops impacted the succeeding productivity of corn and sorghum. We used 15 different winter crop treatments: 5 winter annual grasses in monoculture or mixed with one of two winter annual legumes (crimson clover and hairy vetch). After harvesting the winter crops, corn and forage sorghum were planted. The addition of legumes increased winter crop yield compared to monocultures. Adding legumes increased the protein concentration, but reduced the reduced the fiber and sugar concentrations of the winter crops. Fiber digestibility was reduced with the addition of legumes. The type of grass and legume did not change the nutrient composition of the corn and sorghum. I then explored how the cell wall (CW) composition changes along the corn stalk. Corn plants are split up into phytomers. Each phytomer contains a leaf, a section of the stalk called an internode, and a node (connects internodes). Phytomers at the top of the corn plant are less mature than ones at the bottom, and maturity increases from bottom to top within a corn internode. Three phytomers of individual corn plants were each cut into 4 sections: top, middle, bottom, and node. In plants, the primary cell wall is deposited first. The primary cell wall contains cellulose, hemicellulose, and pectin. The secondary cell wall is deposited after growth. The secondary cell wall is composed of cellulose, hemicellulose, and lignin. Corn that is harvested for cows to eat is usually at a late stage of maturity. Therefore, in our study we saw very few differences among phytomers as cellulose, hemicellulose, pectin, and lignin had most likely been fully deposited. However, within the corn internode, we did see variability in the corn plant cell wall. The cell wall concentration overall increased with maturity within the corn internode. Further, arabinose and xylose concentrations (sugars from hemicellulose) also incased with maturity. Hemicellulose is important in connecting the rest of the cell wall to lignin later in maturity. The concentration of uronic acids from pectin and glucose from cellulose decreased with maturity because these are typically deposited first within the plat cells and then level off once lignin is deposited. In mature corn for silage, changes within the corn internode may be more useful in determining how the environment changes the CW.
104

Correlation of corrosion measurements and bridge conditions with NBIS deck rating

Ramniceanu, Andrei 12 November 2004 (has links)
Since the use of epoxy coated steel has become mandatory starting in the 1980s, recent studies have shown that epoxy coating does not prevent corrosion, but instead will debond from the steel reinforcement in as little as 4 years (Weyers RE et al, 1998) allowing instead a much more insidious form of corrosion to take place known as crevice corrosion. Therefore, it is important to determine if the nondestructive corrosion activity detection methods are applicable to ECR as well as institute guidelines for interpreting the results. Since the corrosion of reinforcing steel is directly responsible for damage to concrete structures, it is surprising that nondestructive corrosion assessment methods are not part of regular bridge inspection programs such as PONTIS and NBIS. Instead, the inspection and bridge rating guidelines of federally mandated programs such as NBIS are so vague as to allow for a relatively subjective application by the field inspectors. Clear cover depths, resistance, corrosion potentials, linear polarization data, as well as environmental exposure and structural data were collected from a sample of 38 bridge decks in the Commonwealth of Virginia. These structures were further divided in three subsets: bridge decks with a specified w/c ratio of 0.47, bridge decks with a specified w/c ratio of 0.45 and bridge decks with a specified w/cm ratio of 0.45. This data was then correlated to determine which parameters are the most influential in the assignment of NBIS condition rating. Relationships between the non-destructive test parameters were also examined to determine if corrosion potentials and linear polarization are applicable to epoxy coated steel. Based on comparisons of measurements distributions, there is an indication that corrosion potential tests may be applicable to structures reinforced with epoxy coated steel. Furthermore, these conclusions are supported by statistical correlations between resistivity, half cell potentials and linear polarization measurements. Unfortunately, although apparently applicable, as of now there are no guidelines to interpret the results. Based on the linear corrosion current density data collected, no conclusion can be drawn regarding the applicability of the linear polarization test. As far as the NBIS deck rating is concerned, since the inspection guidelines are so vague, age becomes a very easy and attractive factor to the field personnel to rely on. However, this conclusion is far from definitive since the very large majority of structures used in this particular study had only two rating values out of theoretically ten and realistically five possible rating values. / Master of Science
105

Cover crop programs, termination methods and timings, and suppression mechanisms on weed growth and competition

Sias, Cynthia 04 January 2024 (has links)
Herbicide resistance, regulations on pesticide use, and cost of pesticides are all challenges for managing weeds in production agriculture. The use of cover crops (CC) has emerged as a promising integrated weed management tool to aid in weed suppression. There are many questions concerning the best management practices to reap the most benefits from CC. Research was conducted to determine if the application of a pre-plant herbicide as well as the type of CC planted would increase CC biomass and subsequent winter weed suppression. Early planting and selecting a cereal rye or a cereal rye-containing mixture are the most important factors to obtain the greatest CC biomass production. Additionally, the combination of a CC and a pre-plant herbicide increased weed suppression compared to a no CC (winter fallow) treatment or CC without a pre-plant herbicide. The difference in Palmer amaranth emergence between a rolled cereal rye CC or one that is left standing was also examined along with termination timing to achieve different CC biomass levels. Overall, greater CC biomass suppressed more Palmer amaranth, but treatments of rolled or standing or termination timing did not affect weed suppression consistently. Light penetration data also showed that greater CC biomass led to a decrease in light penetration through the CC canopy, which could be a factor in reducing Palmer amaranth emergence particularly at the greater CC biomass accumulation levels. Additionally, studies were conducted to investigate the effect of cereal rye CC termination timing (i.e., "planting green" being CC terminated at the time of soybean planting or "planting brown" being CC terminated 2 weeks prior to planting) on Palmer amaranth suppression, as well as to determine how termination timing influences herbicide program optimization. A delay in emergence and growth rate of Palmer amaranth was documented in the CC containing plots when compared to the no CC plots, but no differences were observed between the termination timings. Additionally, significantly lower Palmer amaranth densities were observed under CC containing plots when compared to the no CC treatments. Within CC treatment options, the most economical option was planting green with a single postemergence herbicide application, but overall, no CC treatments were more economical programs. Finally, research was conducted to understand weed and corn competition for nitrogen when hairy vetch + cereal rye CC was present. A range of side dress nitrogen fertilizer rates, weedy versus weed free herbicide programs, and CC versus no-CC treatments were compared. Overall, yield did not differ among treatments. Ear leaf and grain nitrogen was generally greater under weed free, CC, and when fertilized at or above yield goals respective of location. Despite these findings, early season weed control in corn is still necessary to achieve maximum potential yield. These studies indicate that CC biomass is consistently the most important factor for achieving weed suppression, and that CC results can vary in response to environmental and management effects. More research is therefore necessary to evaluate the effects of CC over greater periods of time. / Doctor of Philosophy / Herbicide resistant weeds are a major challenge for farmers across the globe. With the increased number of weed species resistant to multiple herbicides and the restrictions on pesticide use, farmers need more tools to control weeds. The use of cover crops (CC) to suppress weeds can be a viable integrated weed management tool for farmers. Although there are multiple benefits associated with CCs, there are also many drawbacks. CCs are an additional input cost for farmers, and require a greater level of management when compared to conventional systems. There are also many questions concerning best management practices in order to reap the benefits of CCs. Previous research indicates CC biomass is the most important factor in achieving weed suppression. Research trials were conducted at Virginia Tech to determine whether CC species as well as the application of preplant herbicide at the time of CC planting would affect CC biomass production as well as weed suppression. Cereal rye-containing plots produced more biomass overall compared to hairy vetch alone or crimson clover and earlier plantings accumulated greater CC biomass. Additionally, planting earlier was significant for CC biomass accumulation while applying a pre-plant herbicide was not. Weed suppression varied by species but was more successful when both a CC and pre-plant herbicide were applied as compared to no CC and no pre-plant herbicide application. Termination timing and mechanism of CC termination are both known to impact potential CC benefits. Many farmers roll their CC at termination, but it is unclear whether rolling is necessary for weed suppression benefits and soybean yield. Palmer amaranth counts were collected at four and six weeks after planting, as well as yield data across a range of cereal rye CC biomass levels, rolled or left standing at termination, and planted green (CC terminated at the time of planting) versus brown (CC terminated 2 weeks prior to planting). Light penetration measurements were also collected to observe changes in light availability through a CC canopy. Overall, CC treatments reduced Palmer amaranth emergence when compared to no CC, and suppression increased with greater CC biomass. Yield did not differ among treatments, therefore CC management can be tailored to weed suppression efforts. There were clear patterns of light penetration reduction as CC biomass increased. This reduction in light penetration could be part of the reason for the decreased Palmer amaranth emergence with greater CC biomass. Overall, the most important factor affecting weed suppression is accumulation of greater CC biomass. Research was conducted to determine differences in Palmer amaranth suppression due to CC termination timing, as growers have experimented with planting green while traditionally, planting brown or no CC at all was more common. Palmer amaranth groups were created and followed throughout a 10-week period to examine density and growth rates, which allowed various herbicide programs to be simulated and compared. A delay in emergence and growth rate of Palmer amaranth was documented in the CC containing plots when compared to the no CC plots, but no differences were observed between the termination timings. Additionally, significantly lower Palmer amaranth densities were observed under CC containing plots when compared to the no CC treatments. The most effective programs varied by year, but amongst CC options, planting green with a single POST herbicide was optimal, but overall, no CC treatments were more economical due to the expenses associated with CC seed and planting. If a grower is planning on using a CC, the recommendation is therefore to plant green, as lower costs were associated with this practice. In addition to weed suppression benefits, the potential for leguminous CC such as hairy vetch to provide nitrogen for the cash crop is another reason that farmers may plant CCs. However, the effect of a CC on weed competition for nitrogen is still unclear, as the nitrogen released by the CC can also stimulate weed emergence while the CC itself is physically suppressing weeds through its biomass. A study was established to evaluate the effects of CC or no CC, weedy or weed free herbicide programs, and six nitrogen side dress fertilizer rates on yield. Overall, greater concentrations of nitrogen in the ear leaf and in grain were found under CC, weed free, and when fertilized-to-yield goal for the respective locations. Yield was not responsive to treatment effects, and agronomic optimum analysis indicated that a side dress nitrogen to yield goal is still the best option even under CC to achieve optimal yields. Use of CCs is another tool for farmers to implement in their weed control programs. Proper management of CCs can result in increased weed suppression and provide other benefits not examined in this document. However, varying results by location calls for further research to explore the intricacies of CC management and its effect not only on other weed species, but also on other major cash crops.
106

Divergent selection for anthesis of annual ryegrass (Lolium perenne ssp. multiflorum)

Adhikari, Prakriti 13 August 2024 (has links) (PDF)
Annual ryegrass (Lolium perenne ssp. multiflorum) is an excellent cover crop for winter-fallow fields of the Southeast. However, late senescence and herbicide resistance pose challenges for spring eradication. This study aims to develop a ryegrass variety that naturally senescence early using the recurrent phenotypic selection. A base population with anthesis dates from March 21 to April 2 was collected in 2022. 903 seedlings of this population were grown in Cycle0. For Cycle1, the Cycle0 population upon anthesis was segregated into NV0 (11 non-vernalizing), E0 (earliest 70 to anthesis), and L0 (last 70 to anthesis). Isolated groups were allowed to polycross within each group to give NV1, E1, and L1 in 2023. Results indicated that NV1, E1, and L1 gained 18, 14, and 10 days, respectively, with heritability of 0.39, 0.61, and 0.45 for anthesis. The N and E populations will be assessed for cover crop and L for forage variety.
107

Short term effects of annual ryegrass, red clover and hairy vetch cover crops on various indicators of soil health

Stout, Breanna January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Philip L. Barnes / The world’s population has passed 7 billion and is expected grow to more alarming numbers by the year 2050. The increase in human life on the planet ushers the need to responsibly and sustainably grow more food. In order to meet the demand necessary, it is crucial that soil remains healthy and crop yields continue to increase in efficiency. Irresponsible or ill-informed practices can lead to depleted resources and degradation of fertile soils that may limit a producers’ ability to sustainably grow food. Cover crops are a tool that can be used to address issues the modern producer may face. Cover crops have been shown to increase cash crop productivity, improve soil health by improving soil physical and chemical properties as well as providing protection from soil erosion runoff or nutrient leaching. A study was conducted in 2014 to examine the short term effects associated with cover cropping systems. The effects of ryegrass, red clover and a cover crop cocktail (mixture of ryegrass, red clover and hairy vetch) compared to bare tilled and bare control plots were studied. The five treatments were replicated three times in a completely randomized study and analyzed. Soil physical health indicators such as bulk density and porosity were calculated. Soil and cover crop nutrient use, as well as, soil moisture content data was collected and analyzed using excel and ANOVA statistical procedures. In the short term, the study found that there was only statistically significant differences between cover cropping regimens, tilled and control plots in regards to biomass production and biomass nutrient concentrations (α=0.05). The cocktail mix provided more biomass, N and P than the ryegrass and clover plots alone. Observable differences in cover crop volumetric soil moisture and water used between plots demonstrated that cover crops utilize soil moisture in the short term, which must be considered in areas experiencing water stress. Although more long-term data is needed to truly quantify how cover crops effect various aspects of soil health, this study demonstrated how cover crops have the potential for providing numerous benefits such as increased erosion control, lower reliance on anthropogenically created nutrients and the reduction of weeds. Overall the benefits associated with cover crops are still being researched and while adoption of cover cropping systems has been slow, a push towards agricultural sustainability while increasing food production will increase the amount of producers utilizing cover crops in the coming years.
108

Analyse de l’évolution conjointe de la neige et de l’écosystème de taïga au Nunavik dans un climat en réchauffement

Rodrigue, Sébastien January 2014 (has links)
Résumé : Cette recherche présente l'analyse spatio-temporelle de l'évolution conjointe de l'augmentation de la présence arbustive et de la dynamique de la fonte de la neige au Nunavik, Québec, Canada. Cette zone est caractérisée par la complexité de l'interaction de multiples changements simultanés de la température, de la couverture de la neige ainsi que de la pousse végétative. La première partie de ce travail consiste à faire l'analyse de l’évolution temporelle de ces multiples changements. Cette analyse a nécessité la mise en place d’une importante base de données climatiques, satellitaires et de couverture de sol à plusieurs échelles, sur une période allant jusqu'à 60 ans, soit de 1950-2012. La deuxième partie du travail consiste à faire l'analyse spatiale à haute résolution de l’influence de la fraction du couvert arbustif sur la fonte de la neige. L'analyse et l'interprétation des résultats obtenus dans la première partie montrent clairement un changement climatique significatif sur la région étudiée, découpée en 3 bandes de latitude correspondant à la toundra, la taïga ouverte et à la taïga forestière, respectivement du Nord au Sud. Ce changement de climat correspond à un réchauffement marqué, entre 0.75°C et 1.57°C par décade entre les zones 1 (toundra) et 3 (taïga forestière) respectivement. On peut noter que la hauteur de neige maximale annuelle a diminué dans les trois zones alors que les précipitations hivernales ont augmenté en zone 1 et 3 sur les 45 dernières années. Les résultats montrent une nette augmentation de la végétation arbustive dans les zones 2 et 3 (LAI plus élevé de 100% dans la zone 3 par rapport à la zone 1). L'impact de la végétation a été analysé à partir de la durée de fonte relative entre le début de la fonte et la disparition de la neige. Il apparait clairement que la végétation active la fonte précocement, allongeant ainsi significativement la durée de fonte (+600%). Cependant, l'impact de la végétation ne retarde pas la date de fin du couvert nival qui est de plus en plus précoce pour les zones 2 et 3. L'analyse spatiale à haute résolution montre que la présence arbustive entraine une date de fin de neige plus précoce par rapport au sol nu. Cette étude démontre clairement que la croissance de la végétation qui résulte du réchauffement climatique impacte la dynamique du couvert nival, aussi affectée par ce réchauffement. Une étude approfondie des processus en causes avec des mesures in situ appuyées par leur modélisation permettrait de mieux comprendre ces phénomènes. // Abstract : This study presents a spatial-temporal analysis of the joint evolution of the increase of shrubiness and the dynamics of snowmelt in Nunavik, Quebec, Canada. This zone is characterized by the complexity of the interaction of multiple changes of temperature, snow cover and vegetation growth. The first part of this study analyzes the temporal evolution of these changes. The analysis required the use of a large database on climate, satellite data and ground cover at multiple scales over a period of up to 60 years, from 1950 to 2012. The second part of the study consists of a spatial high-resolution analysis of the influence of the fraction of shrub cover on snowmelt. The analysis and interpretation of the results clearly show a significant climate change over the study area, divided into three latitudinal transects corresponding to tundra, open taiga and forested taiga. A significant warming of 0.75 ° C and 1.57 ° C per decade was experienced between zones 1 (tundra) and 3 (forested taiga) respectively. The maximum annual snow depth on the ground decreased over the 3 zones studied while winter precipitations increased in zones 1 and 3 over the last 45 years. The results show a significant increase in shrub vegetation in zones 2 and 3. The impact of the vegetation on snow was analyzed with melt duration (from melt onset to complete melt). It appears clearly that the vegetation triggers the melting process earlier and significantly extends the melt duration (+600%). However, the impact of vegetation does not delay the date of the snow cover disappearance. The high-resolution spatial analysis showed that shrubs cause an earlier snow cover disappearance date than bare soil. This study clearly demonstrates that vegetation growth resulting from global warming impacts the snow cover dynamics, which are also affected by global warming. A thorough study of the processes with in-situ measurements supported by models would help gaining a better comprehension of these phenomena.
109

Idols em imagens e sons, fãs em re-ação: uma etnografia da prática musical do K-pop em São Paulo / Idols in images and sounds, fans in reaction: an ethnography of Kpop music practice in São Paulo

Santos, Thiago Haruo 21 October 2016 (has links)
Este trabalho apresenta uma reflexão antropológica a acerca da prática musical do pop sul coreano (Kpop) em São Paulo. Na etnografia que se apresenta, descrevo e analiso como vídeos e coreografias Kpop afetam os fãs do gênero musical, construindo relações sociais no seu entorno. Apresento, para tanto, primeiro, como o Kpop é visto e ouvido por fãs em São Paulo, dando especial atenção ao videoclipe, que compartilhando características visuais e sonoras únicas, é capaz de gerar nos espectadores reações próprias ao gênero musical. Mostro ainda que esses videoclipes, junto a outras mídias que circulam na internet sobre os artistas sul coreanos, são parte da pessoalidade desses artistas e mediadores de sua capacidade de afetar pessoas. É na cena Kpop de São Paulo que esses vínculos entre fãs e artistas sul coreanos se desdobram, produzindo novas relações entre pessoas, artefatos e lugares. Por fim, apresento uma etnografia da dança cover de Kpop, mostrando como esses fãs constroem em seu próprio corpo essa capacidade de agência apreendida dos ídolos Kpop. Considerando essas diferentes facetas da prática musical estudada, reflito neste trabalho sobre os modos de produzir relações sociais por meio de práticas musicais. / This research presents an anthropological reflection about Korean pop (Kpop) music practice in São Paulo. In this ethnography, I describe and analyze how music videos and choreographies affect fans of the genre, constructing social relations in its vicinity. Firstly, I present how Kpop is seen and heard by these fans in São Paulo, driving special attention on music videos. These medias share visual and sound characteristics that allow them to make Kpop fans react in a unique way. I also state that these music videos combined with other medias about South Korean artists that circulate on the internet are part of Kpop idols personhood that mediates their capacity to affect people who get in touch with them. It is in the Kpop musical scene in São Paulo that these affection ties between fans and artists take place and unfold. In the scene, new relations between persons, artefacts and places are produced. At the end, I present an ethnography of Kpop cover dance, paying attention to the way Kpop fans construct in their own body the capacity for agency apprehended from Kpop idols. Looking at different aspects of the Kpop music practice, this work reflects upon the production of social relations through music practices.
110

Rodas compactadoras e aterradoras na qualidade de acabamento de semeadura direta

Soares, Tatiane Aparecida [UNESP] 18 December 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-12-18Bitstream added on 2014-06-13T19:19:56Z : No. of bitstreams: 1 soares_ta_dr_jabo.pdf: 1734974 bytes, checksum: 8d54e9e4e3cc5af52880f71df0be7d31 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O plantio direto consiste em um sistema de manejo conservacionista da produção agrícola, que promove a melhoria das condições físicas, químicas e biológicas do solo. Desta forma, o objetivo do presente trabalho foi a avaliação de sistemas de acabamento de semeadura existentes no mercado nacional, utilizados em semeadoras de precisão para plantio direto, assim como novas propostas, levando em conta fatores que afetam a germinação das sementes e a emergência das plântulas no campo. O experimento foi conduzido na Fazenda Experimental do Instituto Agronômico do Paraná – IAPAR, em Londrina, utilizando-se o delineamento experimental em blocos ao acaso, com oito tratamentos e quatro repetições para a cultura do feijão e três repetições para a cultura da soja. Os tratamentos foram constituídos de oito sistemas de acabamento de semeadura, dotados de componentes com e sem aterramento, sistemas de controle de profundidade de sementes e rodas compactadoras. Foram avaliadas variáveis do solo, das sementes e parâmetros de desempenho das unidades semeadoras. Conclui-se que os discos aterradores melhoram os resultados das unidades de semeadura, beneficiando a operação em diferentes aspectos e aumentando a emergência. As rodas controladoras de profundidade paralelas melhoram os resultados dos discos aterradores, inclusive os de emergência. As rodas compactadoras lisas não são indicadas, pois promovem problemas de selamento superficial. As rodas compactadoras em “V” apresentaram bons resultados, mas as rodas compactadoras com garras e sulcos internos tendem a ser melhores / No-till is a system of conservation management of agricultural production, which promotes the improvement of the physical, chemical and biological soil conditions. Thus, the purpose of this study was to evaluate the systems finish seeding on the market in Brazil, used in precision seeders for no-till planters, as well as new proposals, considering factors that affect seed germination and emergence seedlings in the field. The experiment was conducted at the Experimental Farm of the Agronomic Institute of Paraná – IAPAR, in Londrina, using the randomized block planning with eight treatments and four repetitions for the cultivation of beans and three repetitions for soybean. Treatments consist of eight systems of finish seeding that having components with and without ground finish systems, depth of seed and compactor wheels. Was evaluated soil variables, seeds variables and performance parameters of seeding units. It was concluded that soil cover disks improve the seeding units performance, benefit the operation in different aspects and increasing the emergency. Parallel depth controller wheels improve results of soil cover discs, including the emergency. The flat compactor wheels are not recommended, because they promote soil surface sealing problems. The wheels in V had good results, but the wheels with grip and internal ridges tend to be better

Page generated in 1.2762 seconds