• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 271
  • 38
  • 25
  • 21
  • 10
  • 6
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 521
  • 521
  • 224
  • 212
  • 128
  • 112
  • 91
  • 81
  • 77
  • 68
  • 65
  • 63
  • 62
  • 62
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Random Hopping for Cognitive Radio Networks

Wang, Wen-cheng 25 July 2007 (has links)
Recently, with the fast development of wireless communications, the radio spectrum becomes a precious natural resource. Many researches and reports reveal the problems of inefficient spectrum utilization. Cognitive Radio (CR) technology is now developing for solving this critical problem. This technology will enable various kinds of wireless systems to look for and connect radio frequency spectrum that the locality leave unused by oneself, to offer the best service to user. The CR will pass in and out the idle frequency band according to the demand while receiving and dispatching the signal, avoid the frequency band that has been already used. In CR network, the objective is to maximize the throughput of secondary users while limiting the probability of colliding with primary users below a prescribed level. In this paper, we consider a distributed secondary networks model where users seek spectrum opportunities independently that overlaying the primary networks to analyze the system performance and the effect to the primary users with the existence of both primary users and secondary users under the cognitive radio networks. In the cognitive system, due to the existence of noise and fading effect, error detection cannot be avoided. Therefore, we made a comparison to the difference of the efficiency among environments of different probability of miss detection. We also propose a random hopping method for all secondary users in system will re-sensing after a random period of time. Hereby, efficiently decreases the ratio of time that influences the primary users by the secondary users, and further research the factor that influences its efficiency.
92

WRAN Based on Cognitive Radio and its Perfromance Analysis

Kuo, Hui-chin 12 February 2009 (has links)
none
93

Communication protocols for wireless cognitive radio ad-hoc networks

Chowdhury, Kaushik Roy. January 2009 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Akyildiz, Ian; Committee Member: Ingram, Mary Ann; Committee Member: Blough, Douglas; Committee Member: Dovrolis, Konstantinos; Committee Member: Li, Ye. Part of the SMARTech Electronic Thesis and Dissertation Collection.
94

Cognitive radio networks for dynamic spectrum management /

Jia, Juncheng. January 2009 (has links)
Includes bibliographical references (p. 124-131).
95

Priority Queuing Based Spectrum sensing Methodology in Cognitive Radio Network / Priority Queuing Based Spectrum sensing Methodology in Cognitive Radio Network

sajiduet84@gmail.com, Sajid Mahmood /, mujeeb.abdullah@gmail.com, Mujeeb Abdullah / January 2011 (has links)
Radio spectrum is becoming scarce resource due to increase in the usage of wireless communication devices. However studies have revealed that most of the allotted spectrum is not used effectively. Given the demand for more bandwidth and the amount of underutilized spectrum, DSA (Dynamic Spectrum Access) networks employing cognitive radios are a solution that can revolutionize the telecommunications industry, significantly changing the way we use spectrum resources, and design wireless systems and services. Cognitive radio has improve the spectral efficiency of licensed radio frequency bands by accessing unused part of the band opportunistically without interfering with a license primary user PU. In this thesis we investigate the effects on the quality of service (QoS) performance of spectrum management techniques for the connection-based channel usage behavior for Secondary user (SU). This study also consider other factors such as spectrum sensing time, spectrum handoff and generally distributed service time and channel contention for different SUs. The preemptive resume priority M/G/1 queuing theory is used to characterize the above mentioned effects. The proposed structure of the model can integrate various system parameters such spectrum sensing, spectrum decision, spectrum sharing and spectrum handoff. / Sajid Mahmood 0046-762788990 Mujeeb Abdullah 0046-760908069
96

Genetic Algorithm for Selecting Optimal Secondary Users to Collaborate in Spectrum sensing / Genetisk algoritm för val av Optimal Sekundära användare att samarbeta i Spectrum avkänning

farooq, Muhammad, Raja, Abdullah Aslam January 2010 (has links)
Cognitive Radio is an innovative technology that allows the secondary unlicensed users to share the spectrum with licensed primary users to utilize the spectrum. For maximum utilization of spectrum, in cognitive radio network spectrum sensing is an important issue. Cognitive user under extreme shadowing and channel fading can‟t sense the primary licensed user signal correctly and thus to improve the performance of spectrum sensing, collaboration between secondary unlicensed users is required. In collaborative spectrum sensing the observation of each secondary user is received by a base station acting as a central entity, where a final conclusion about the presence or absence of the primary user signal is made using a particular decision and fusion rule. Due to spatially correlated shadowing the collaborative spectrum sensing performance decreases, and thus optimum secondary users must be selected to, not only improve spectrum sensing performance but also lessen the processing overhead of the central entity. A particular situation is depicted in the project where according to some performance parameters, first those optimum secondary users that have enough spatial separation and high average received SNR are selected using Genetic Algorithm, and then collaboration among these optimum secondary users is done to evaluate the performance. The collaboration of optimal secondary user providing high probability of detection and low probability of false alarm, for sensing the spectrum is compared with the collaboration of all the available secondary users in that radio environment. At the end a conclusion has been made that collaboration of selected optimum secondary users provides better performance, then the collaboration of all the secondary users available. / Cognitive Radio is an innovative technology that allows the secondary unlicensed users to share the spectrum with licensed primary users to utilize the spectrum. For maximum utilization of spectrum, in cognitive radio network spectrum sensing is an important issue. Cognitive user under extreme shadowing and channel fading can‟t sense the primary licensed user signal correctly and thus to improve the performance of spectrum sensing, collaboration between secondary unlicensed users is required. In collaborative spectrum sensing the observation of each secondary user is received by a base station acting as a central entity, where a final conclusion about the presence or absence of the primary user signal is made using a particular decision and fusion rule. Due to spatially correlated shadowing the collaborative spectrum sensing performance decreases, and thus optimum secondary users must be selected to, not only improve spectrum sensing performance but also lessen the processing overhead of the central entity. A particular situation is depicted in the project where according to some performance parameters, first those optimum secondary users that have enough spatial separation and high average received SNR are selected using Genetic Algorithm, and then collaboration among these optimum secondary users is done to evaluate the performance. The collaboration of optimal secondary user providing high probability of detection and low probability of false alarm, for sensing the spectrum is compared with the collaboration of all the available secondary users in that radio environment. At the end a conclusion has been made that collaboration of selected optimum secondary users provides better performance, then the collaboration of all the secondary users available.
97

Beyond white space : robust spectrum sensing and channel statistics based spectrum accessing strategies for cognitive radio network

Liu, Yingxi 31 October 2013 (has links)
Cognitive radio refers to the technology that the devices can intelligently access unused frequency resources which are originally reserved for legacy services in order to increase the spectrum utilization. At the mean time, the legacy services should not be affected by the access of cognitive radio devices. The common problems in cognitive radio are how to find unused frequency resources (spectrum sensing) and how to access them (spectrum accessing). This dissertation focuses on the robust methods of spectrum sensing as well as spectrum accessing strategies with the statistics of channel availabilities. The first part of the thesis studies non-parametric robust hypothesis testing problem to eliminate the effect of the uncertainty and instability introduced by non-stationary noise, which is constantly observed in communication systems. An empirical likelihood ratio test with density function constraints is proposed. This test outperforms many popular goodness-of-fit tests, including the robust Kolmogorov-Smirnov test and the Cramér-von Mises test, etc. Examples using spectrum sensing data with real-world noise samples are provided to show their performance. The second part focuses on channel idle time distribution based spectrum accessing strategies. Through the study of the real-world wireless local area network traffic, it is identified that the channel idle time distribution can be modeled using hyper-exponential distribution. With this model, the performance of a single cognitive radio, or the secondary user, is studied when the licensed user, or the primary user, does not react to interference. It is also shown that with the complete information of the hyper-exponential distribution, the secondary user can achieve a desirable performance. But when the model exhibits uncertainty and time non-stationarity, which would happen for any kind of wireless traffic, the secondary user suffers from huge performance loss. A strategy that is robust to the uncertainty is proposed. The performance of this strategy is demonstrated using experimental data. Another aspect of the problem is when the PU is reactive. In this case, a spectrum accessing strategy is devised to avoid large-duration interference to the PU. Additionally, the spectrum accessing strategies are also extended to the cognitive radio networks with multiple secondary users. A decentralized MAC protocol is devised which reaches a total secondary capacity performance close to the optimal. A discussion of the engineering aspects with practical consideration of spectrum sensing and accessing is given at the end. / text
98

Efficient Radio Resource Management and Routing Mechanisms for Opportunistic Spectrum Access Networks

Shu, Tao January 2010 (has links)
Opportunistic spectrum access (OSA) promises to significantly improve the utilization of the RF spectrum. Under OSA, an unlicensed secondary user (SU) is allowed to detect and access under-utilized portions of the licensed spectrum, provided that such operation does not interfere with the communication of licensed primary users (PUs). Cognitive radio (CR) is a key enabling technology of OSA. In this dissertation, we propose several radio resource management and routing mechanisms that optimize the discovery and utilization of spectrum opportunities in a cognitive radio network (CRN). First, we propose a sequential channel sensing and probing mechanism that enables a resource-constrained SU to efficiently identify the optimal transmission opportunity from a pool of potentially usable channels. This mechanism maximizes the SUs expected throughput by accounting for the tradeoff between the reward and overhead of scanning additional channels. The optimal channel sensing and probing process is modeled as a maximum-rate-of-return problem in optimal stopping theory. Operational parameters, such as sensing and probing times, are optimized by exploiting the problem's special structure. Second, we study the problem of coordinated spectrum access in CRNs to maximize the CRNs throughput. By exploiting the geographic relationship between an SU and its surrounding PUs, we propose the novel concept of microscopic spectrum opportunity, in which active SUs and PUs are allowed to operate in the same region, subject to power constraints. Under this framework, we formulate the coordinated channel access problem as a joint power/rate control and channel assignment optimization problem. Centralized and distributed approximate algorithms are proposed to solve this problem efficiently. Compared with its macroscopic counterpart, we show that the microscopic-spectrum-opportunity framework offers significant throughput gains. Finally, at the network layer, we study the problem of truthful least-priced-path (LPP) routing for profit-driven CRNs. We design a route selection and pricing mechanism that guarantees truthful spectrum cost reporting from profit-driven SUs and that finds the cheapest route for end users. The problem is investigated with and without capacity constraints at individual nodes. In both cases, polynomial-time algorithms are developed to solve the LPP problem. Extensive simulations are conducted to verify the validity of the proposed mechanisms.
99

Resource allocation for OFDM-based cognitive radio systems

Zhang, Yonghong 05 1900 (has links)
Cognitive radio (CR) is a novel wireless communication approach that may alleviate the looming spectrum-shortage crisis. Orthogonal frequency division multiplexing (OFDM) is an attractive modulation candidate for CR systems. In this thesis, we study resource allocation (RA) for OFDM-based CR systems using both aggressive and protective sharing. In aggressive sharing, cognitive radio users (CRUs) can share both non-active and active primary user (PU) bands. We develop a model that describes aggressive sharing, and formulate a corresponding multidimensional knapsack problem (MDKP). Low-complexity suboptimal RA algorithms are proposed for both single and multiple CRU systems. A simplified model is proposed which provides a faster suboptimal solution. Simulation results show that the proposed suboptimal solutions are close to optimal, and that aggressive sharing of the whole band can provide a substantial performance improvement over protective sharing, which makes use of only the non-active PU bands. Although aggressive sharing generally yields a higher spectrum-utilization efficiency than protective sharing, aggressive sharing may not be feasible in some situations. In such cases, sharing only non-active PU bands is more appropriate. When there are no fairness or quality of service (QoS) considerations among CRUs, both theoretical analysis and simulation results show that plain equal power allocation (PEPA) yields similar performance as optimal power allocation in a multiuser OFDM-based CR system. We propose a low-complexity discrete bit PEPA algorithm. To improve spectrum-utilization efficiency, while considering the time-varying nature of the available spectrum as well as the fading characteristics of wireless communication channels and providing QoS provisioning and fairness among users, this thesis introduces the following novel algorithms: (1) a distributed RA algorithm that provides both fairness and efficient spectrum usage for ad hoc systems; (2) a RA algorithm for non-real-time (NRT) services that maintains average user rates proportionally on the downlink of multiuser OFDM-based CR systems; and (3) cross-layer RA algorithms for the downlink of multiuser OFDM-based CR systems for both real-time (RT) services and mixed (RT and NRT) services. Simulation results show that the proposed algorithms provide satisfactory QoS to all supported services and perform better than existing algorithms designed for multiuser OFDM systems.
100

Cognitive-Empowered Femtocells: An Intelligent Paradigm of a Robust and Efficient Media Access

Wang, Xiao Yu 20 September 2010 (has links)
Driven by both the need for ubiquitous wireless services and the stringent strain on radio spectrum faced in today's wireless communications, cognitive radio (CR) have been investigated as a promising solution to deploy Wireless Regional Area Networks (WRANs) for an efficient spectrum utilization. Communication devices with CR capabilities are able to access spectrum bands licensed for other wireless services in an opportunistic and secondary fashion, while preventing harmful interference to incumbent licensed services. However, a lesson learned from early experiences in developing such macro-cellular networks is that it becomes increasingly less economically viable to develop CR macrocellular infrastructures for increasing data rates in both line-of-sight as well as non-line-of-sight situation of WRAN, and the corresponding quality of service (QoS) in macrocellular networks is also noticeably degraded due to path loss, shadowing, and multipath fading due to wall penetration. Moreover, there are several challenges to make the real-world CR enabling dynamic spectrum access a difficult problem to implement without harmful interference. First, the hardware design of cognitive radio on the physical layer involves the tuning over a broad range of spectrum to detect a weak signal in a dynamic environment of fading channels, which in turn makes identification of the spectrum opportunities hard to achieve in an efficient and accurate manner. Second, opportunistic media access based on imperfect spectrum usage information obtain from physical layer brings up undesirable interference issue, as well as reliability issues introduced by mutual interference. Third, the curial issue is to determine which channels to use for data transmissions in presence of the dynamic and opportunistic nature of wireless environments, in the case where pre-defined dedicated control channel is not available in the complex and heterogenous networks. In this dissertation, a novel framework called Cognitive-Empowered Femtocell (CEF), which combines CR techniques with femtocell networking, is introduced to tackle these challenges and achieve better spectrum reuse, lower interference, easy integration, wider network coverage, as well as fast and cost effective early stage WRAN. In this framework, a sensing coordination scheme is proposed to gracefully unshackles the master/slave relationship between central controllers and end users, while maintaining order and coordination such that better sensing precision and efficiency can be achieved. As such, the network intelligence can be expanded from controlling the intelligence paradigm to better understand the satisfy wireless user needs. We also discuss design and deployment aspects such as sensing with reasoning approach, gossip-enabled stochastic media access without a dedicated control channel, all of which are important to the success of the CEF framework. We illustrate that such a framework allows wireless users to intelligently capture spectrum opportunities while mitigating interference to other users, as well as improving the network capacity. Performance analysis and simulations were conducted based on these techniques to provide insight on the future direction of interference suppression for dynamic spectrum access.

Page generated in 0.0542 seconds