1 |
Fuelling the Fire: Mitochondrial Fuel Selection for Sustaining Shivering Thermogenesis in the High-Altitude Deer Mouse, Peromyscus ManiculatusBaragar, Claire Eugenie January 2023 (has links)
High altitude is characterized by chronically low ambient temperatures and oxygen. To survive, highland native deer mice (Peromyscus maniculatus) are capable of high rates of prolonged thermogenesis due to elevated aerobic capacity (V̇O2max) in hypoxia. Deer mice primarily use fats to fuel their high metabolic rates for heat production. Carnitine palmitoyl-transferase 1 (CPT-1) is a rate-limiting step in mitochondrial fat oxidation, and a reduction in CPT-I sensitivity for its substrate L-carnitine is associated with a reduction in muscle fat use during high intensity exercise in mammals. Sensitivity of mitochondrial metabolism to ADP also changes with exercise. It is currently unknown whether similar mechanisms underpin regulation of fuel use during shivering, but I predicted that sensitivities to ADP and L-carnitine would be greater in highlanders than lowlanders and increase with acclimation. To address this question, I examined mitochondrial sensitivity to substrates involved in the fat oxidation pathway in low- and high- altitude deer mice born and raised in common laboratory conditions. Mice were also acclimated to high altitude condition of cold hypoxia to examine if the plasticity of these traits were affected by altitude ancestry. Consistent with previous findings, both high and lowland mice increased their cold-induced V̇O2max following cold hypoxia acclimation and rely primarily on lipids to fuel thermogenesis. High- and low-altitude deer mice responded differently to chronic cold hypoxia with highlanders showing a ~7-fold greater ADP sensitivity than lowlanders following acclimation. In contrast to the expected outcome, highlander deer mice tended to have a reduced sensitivity to L-carnitine compared to lowlanders that approached statistical significance. Neither sensitivity to palmitoylcarnitine sensitivity nor mitochondrial expression of FAT/CD36, thought to aid in mitochondrial fat delivery, showed differences between population or changes with acclimation, indicating that limitations to lipid oxidation during shivering likely occur at, or upstream of, CPT-I in the deer mouse. / Thesis / Master of Science (MSc) / Some animals can survive extremely harsh climates, such as high altitude. High altitude is characterized by unremitting cold and thin air, and these challenges can constrain aerobic activities in mammals. The North American deer mouse can thrive at high altitude by actively generating large amounts of body heat in a process known as thermogenesis. The deer mouse relies primarily on fats as fuel to support thermogenesis, but the cellular mechanisms that regulate the use of lipids to power thermogenesis remain unclear. To address this question, I induced shivering in deer mice from both high- and low-altitude populations that I exposed to simulated high- or low-altitude conditions. I then examined the effects of these treatments on the ability of shivering muscle to consume oxygen and fuel for thermogenesis. My thesis contributes to the current understanding of how mammals manage their energy supply to survive in a challenging environment.
|
2 |
Resistencia a la insulina inducida por acidos grasos en células de músculo esquelético L6E9: papel de la carnitina palmitoiltransferasa I (CPT-I)Sebastián Muñoz, David 31 March 2006 (has links)
La resistencia a la insulina es un estado patológico que se define como la incapacidad del organismo de responder normalmente a las acciones de la insulina. Este estado está ligado a la obesidad, al estilo sedentario de vida y es responsable en gran medida de la aparición de la diabetes de tipo 2. Aunque tradicionalmente el estudio de esta patología se había centrado en el metabolismo de carbohidratos, en las últimas décadas se ha producido un cambio hacia el estudio del metabolismo de ácidos grasos como principal promotor de esta enfermedad. De este modo, se ha demostrado una correlación entre la acumulación de lípidos en tejidos periféricos (hígado y músculo principalmente) y la aparición de resistencia a la insulina.El músculo es el responsable de la mayor parte del metabolismo de la glucosa en situaciones de estimulación por insulina. Esto confiere al músculo una vital importancia en el desarrollo de la resistencia a la insulina así como para el tratamiento de la diabetes de tipo 2. Numerosos estudios han descrito que la acumulación de especies derivadas de ácidos grasos en músculo, ya sea debido a un aporte excesivo de lípidos o a un fallo en su oxidación, conducen a una resistencia a la insulina. Estas especies derivadas de ácidos grasos actúan interfiriendo en la señalización de la insulina mediante la activación de una serie de proteínas, conduciendo a una desensibilización del músculo a las acciones de la insulina.En esta tesis se ha estudiado si un aumento en la oxidación de ácidos grasos en músculo es capaz de impedir la acumulación de sus derivados lipídicos y por lo tanto evitar la resistencia a la insulina ocasionada por ellos. Con este objetivo se han usado dos aproximaciones experimentales. En primer lugar, se ha evaluado el efecto de la sobreexpresión de la carnitina palmitoiltransferasa I (CPT I), que es la enzima responsable del control del transporte de ácidos grasos a la mitocondria, donde serán oxidados, y en segundo lugar, se ha estudiado el efecto del C75, un activador de la CPT I recientemente descrito. Además, también se ha estudiado el papel de otra proteína recientemente involucrada en el control de la oxidación de ácidos grasos en músculo, la FAT/CD36. Todo esto se ha llevado a cabo usando como modelo de estudio células de músculo esquelético de rata L6E9.Los resultados presentados en esta tesis demuestran que la sobreexpresión de CPT I ha resultado efectiva en el aumento de la oxidación de ácidos grasos, impidiendo su acumulación y por lo tanto protegiendo a la célula de la resistencia a la insulina. En cambio, se ha demostrado que el C75, a través de su activación a C75-CoA, se comporta como un inhibidor de la CPT I y por lo tanto de la oxidación de ácidos grasos en músculo esquelético. Por último, no se ha podido demostrar que FAT/CD36 juegue un papel importante en la oxidación de ácidos grasos en las condiciones de estudio utilizadas. Estos resultados confirman la importancia del metabolismo lipídico en la resistencia a la insulina en músculo y describen la CPT I como una posible diana farmacológica para el tratamiento de la resistencia a la insulina y la diabetes de tipo 2. Por otro lado describen una nueva acción del C75 sobre la actividad CPT I y sugieren la necesidad de realizar más estudios para esclarecer el papel de FAT/CD36 en la oxidación de ácidos grasos en músculo esquelético. / Skeletal muscle is responsible for 70-80% of whole-body insulin-stimulated glucose uptake and is therefore generally considered the most important site of insulin resistance. Insulin resistance in skeletal muscle plays a major role in the pathogenesis of type 2 diabetes although the mechanism responsible remains unclear. Intramuscular lipid accumulation is evident in a wide set of experimental models, including humans, rodents and muscle cells in culture. These observations have promoted the so-called lipotoxic model of skeletal muscle insulin resistance, which proposes that high plasma fatty-acid levels observed in the obese or insulin-resistant state lead to muscle lipid accumulation, which in turn causes a predisposition towards decreased insulin sensitivity and worsening of the disease.In this thesis we have tested the hypothesis that increases in fatty-acid oxidation should protect from fatty acid induced-insulin resistance by reducing lipid accumulation in the muscle cell. For this purpose we have used two experimental approaches: a) the overexpression of carnitine palmitoyltransferase I (CPT I), the rate-limiting enzyme in fatty acid import into mitochondria for oxidation, and b) study the effect of C75, a recently described CPT I agonist, in fatty-acid oxidation in muscle cells. Moreover we have studied the role of FAT/CD36, a protein recently described to be involved in beta-oxidation in muscle, in the rat skeletal muscle cultured cell line L6E9.Overexpression of LCPT I in L6E9 myotubes increased CPT I activity and palmitate oxidation, preventing lipid accumulation. As a result insulin sensitivity was completely restored. In contrast, C75 acted as an inhibitor of CPT I activity and palmitate oxidation, instead of an activator, both in muscle cells and in mice muscle in vivo. Finally, FAT/CD36 had not an important role in the control of fatty-acid oxidation in L6E9 myoutbes under our experimental conditions. These data confirm the importance of lipid metabolism in muscle insulin resistance and describe CPT I as a possible pharmacologic target for the treatment of insulin resistance and type 2 diabetes. Moreover, we describe a new role of C75 over CPT I activity and fatty-acid oxidation in skeletal muscle.
|
Page generated in 0.035 seconds