• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes

Fullerton, Tracy 2011 December 1900 (has links)
Laminar, two-dimensional, constant-property numerical simulations of flat tube heat exchanger devices operating in flow regimes in which self-sustained oscillations occur were performed. The unsteady flow regimes were transition flow regimes characterized by cyclic variations of flow parameters such as stream-wise or cross-stream velocity. A computer code was developed to perform the numerical simulations. Spatial discretization was based upon a Control Volume Finite Element Method (CVFEM). Temporal discretization was based upon a semi-implicit Runge-Kutta method. Double Cyclic conditions were used to limit the numerical domains to one repeating geometric module. Nine geometric domains representing flat tube heat exchanger devices were tested over a range of Reynolds numbers. A maximum Reynolds number (Re) of 2000 was established to keep the study within the transition range. For each domain, a critical Reynolds number (Re_crit) was found such that for Re < Re_crit the flow was steady, laminar flow and for Re > Re_crit the flow exhibited cyclic oscillations. For the cases tested, the variation in longitudinal pitch had little impact on the Re_crit value for a fixed transverse pitch. However, for a fixed longitudinal pitch, the Re_crit was increased for decreasing transverse pitch. The results demonstrate the importance of using unsteady simulation methods for these cases. Nusselt numbers predicted by the unsteady method were on the order of 65% higher than predicted by steady methods for the same Reynolds numbers. Data for required pumping power versus resultant Nusselt number were collected which showed four distinct operating regions for these devices spanning the low Reynolds number, steady flow region through the self-sustained oscillating flow region. Based on the data, the recommended operating region is the region of self-sustained oscillations as this region is characterized by the highest increase in Nusselt number per increase in required pumping power.
2

Simulação de escoamento de fluidos em superfícies definidas por pontos não organizados / Fluid flow simulation in surfaces defined by non-organized points

Estacio, Kémelli Campanharo 24 October 2008 (has links)
Atualmente diversos produtos são fabricados por meio de injeção de polímeros, num processo denominado moldagem por injeção: material fundido é injetado em um molde no qual resfria e endurece. Contudo, ao contrário de outros processos de produção, a qualidade da peça criada por meio de moldagem por injeção não depende apenas do material e da sua forma geométrica, mas também da maneira na qual o material é processado durante a moldagem. Por esse motivo, o uso de modelagem matemática e simulações numéricas tem aumentado consideravelmente como maneira de auxiliar o processo de produção e tem-se tornado uma ferramenta indispensável. Desta forma, este projeto tem o propósito de simular o escoamento de fluidos durante a fase de preenchimento do processo de moldagem por injeção, utilizando o modelo 21/2-dimensional, composto por uma equação bidimensional para a pressão, conhecida como equação de Hele-Shaw, e uma equação tridimensional para a temperatura do fluido. Um modelo bidimensional para a temperatura é também desenvolvido e apresentado. Este projeto de doutorado propõe duas estratégias numéricas para a solução da equação de Hele-Shaw. A primeira delas é baseada em uma formulação euleriana do método Smoothed Particle Hydrodynamics, onde os pontos utilizados na discretização não se movem, e não há utilização de malhas. A segunda estratégia é baseada na criação de malhas dinamicamente construídas na região do molde que já encontra-se parcialmente cheio de fluido e subseqüente aplicação do método Control Volume Finite Element Method. Uma estratégia dinâmica do método semi lagrangeano é apresentada e aplicada à solução da equação bidimensional da temperatura. O projeto também pretende investigar três novas abordagens para o tratamento da superfície livre. Duas delas são baseadas na técnica Volume of Fluid e uma delas é uma adaptação meshless do método Front-Tracking. O comportamento não newtoniano do fluido é caracterizado por uma família de modelos de viscosidade. Testes numéricos indicando a confiabilidade das metodologias propostas são conduzidos / Currently, several plastic products are manufactured by polymer injection, in a process named injection molding: molten material is injected into a thin mold where it cools and solidifies. However, unlike other manufacturing processes, the quality of injection-molded parts depends not only on the material and shape of the part, but also on how the material is processed throughout the molding. For this reason, the use of mathematical modelling and numerical simulations has been increasing in order to assist in the manufacturing process, and it has become an essential tool. Therefore, this Sc.D. project has the purpose of simulating the fluid flow during the filling stage of the injection molding process, using the 21/2-dimensional model, compounded by a two-dimensional equation for the pressure field (also known as Hele-Shaw equation) and a three-dimensional equation for the temperature of the fluid. A simpler two-dimensional model for the temperature field is also derived and presented. This project proposes two novel numerical strategies for the solution of Hele-Shaw equation. The first one is based on an Eulerian formulation of the Smoothed Particle Hydrodynamics method, where the particles used in the discretization do not move along as the simulation evolves, thereby avoing the use of meshes. In the second strategy, local active dual patches are constructed on-the-fly for each active point to form a dynamic virtual mesh of active elements that evolves with the moving interface, then the Control Volume Finite Element Method is applied for the pressure field approximation. A dynamic approach of the semi-Lagrangian scheme is applied to the solution of the two-dimensional temperature equation. The project also assesses three new approaches for the treatment of the free surface of the fluid flow. Two of them are based on the Volume of Fluid technique and one of them is a meshless adaptation of the Front-Tracking method. The non-Newtonian behavior is characterized by a family of generalized viscosity models. Supporting numerical tests and performance studies, which assess the accuracy and the reliability of the proposed methodologies, are conducted
3

Simulação de escoamento de fluidos em superfícies definidas por pontos não organizados / Fluid flow simulation in surfaces defined by non-organized points

Kémelli Campanharo Estacio 24 October 2008 (has links)
Atualmente diversos produtos são fabricados por meio de injeção de polímeros, num processo denominado moldagem por injeção: material fundido é injetado em um molde no qual resfria e endurece. Contudo, ao contrário de outros processos de produção, a qualidade da peça criada por meio de moldagem por injeção não depende apenas do material e da sua forma geométrica, mas também da maneira na qual o material é processado durante a moldagem. Por esse motivo, o uso de modelagem matemática e simulações numéricas tem aumentado consideravelmente como maneira de auxiliar o processo de produção e tem-se tornado uma ferramenta indispensável. Desta forma, este projeto tem o propósito de simular o escoamento de fluidos durante a fase de preenchimento do processo de moldagem por injeção, utilizando o modelo 21/2-dimensional, composto por uma equação bidimensional para a pressão, conhecida como equação de Hele-Shaw, e uma equação tridimensional para a temperatura do fluido. Um modelo bidimensional para a temperatura é também desenvolvido e apresentado. Este projeto de doutorado propõe duas estratégias numéricas para a solução da equação de Hele-Shaw. A primeira delas é baseada em uma formulação euleriana do método Smoothed Particle Hydrodynamics, onde os pontos utilizados na discretização não se movem, e não há utilização de malhas. A segunda estratégia é baseada na criação de malhas dinamicamente construídas na região do molde que já encontra-se parcialmente cheio de fluido e subseqüente aplicação do método Control Volume Finite Element Method. Uma estratégia dinâmica do método semi lagrangeano é apresentada e aplicada à solução da equação bidimensional da temperatura. O projeto também pretende investigar três novas abordagens para o tratamento da superfície livre. Duas delas são baseadas na técnica Volume of Fluid e uma delas é uma adaptação meshless do método Front-Tracking. O comportamento não newtoniano do fluido é caracterizado por uma família de modelos de viscosidade. Testes numéricos indicando a confiabilidade das metodologias propostas são conduzidos / Currently, several plastic products are manufactured by polymer injection, in a process named injection molding: molten material is injected into a thin mold where it cools and solidifies. However, unlike other manufacturing processes, the quality of injection-molded parts depends not only on the material and shape of the part, but also on how the material is processed throughout the molding. For this reason, the use of mathematical modelling and numerical simulations has been increasing in order to assist in the manufacturing process, and it has become an essential tool. Therefore, this Sc.D. project has the purpose of simulating the fluid flow during the filling stage of the injection molding process, using the 21/2-dimensional model, compounded by a two-dimensional equation for the pressure field (also known as Hele-Shaw equation) and a three-dimensional equation for the temperature of the fluid. A simpler two-dimensional model for the temperature field is also derived and presented. This project proposes two novel numerical strategies for the solution of Hele-Shaw equation. The first one is based on an Eulerian formulation of the Smoothed Particle Hydrodynamics method, where the particles used in the discretization do not move along as the simulation evolves, thereby avoing the use of meshes. In the second strategy, local active dual patches are constructed on-the-fly for each active point to form a dynamic virtual mesh of active elements that evolves with the moving interface, then the Control Volume Finite Element Method is applied for the pressure field approximation. A dynamic approach of the semi-Lagrangian scheme is applied to the solution of the two-dimensional temperature equation. The project also assesses three new approaches for the treatment of the free surface of the fluid flow. Two of them are based on the Volume of Fluid technique and one of them is a meshless adaptation of the Front-Tracking method. The non-Newtonian behavior is characterized by a family of generalized viscosity models. Supporting numerical tests and performance studies, which assess the accuracy and the reliability of the proposed methodologies, are conducted
4

Modélisation du couplage hydromécanique lors de la mise en oeuvre des composites par infusion / Modelling of hydromechanical coupling during composite manufacturing by the infusion process

Loudad, Raounak 19 January 2016 (has links)
L’objectif de ce travail est de contribuer à la modélisation du couplage hydromécanique, existant entre la déformation de la préforme fibreuse et l’écoulement de la résine, et par la suite à la simulation des procédés d’infusion. La méthode de résolution numérique déployée dans ce cadre est de type éléments finis avec volumes de contrôles (CVFEM) formulée en 2D½. Une nouvelle approche de modélisation de procédé d’infusion est proposée. Dans cette méthode, nous avons introduit des éléments 1D qui traduisent l’écoulement transverse. Cette approche permet de surmonter la difficulté numérique relative à l’usage des éléments finis volumiques pour un calcul 3D, notamment pour simuler la mise en œuvre des pièces industrielles de grandes dimensions. Le modèle fait appel à des lois de comportements caractérisées expérimentalement et qui permettent de tenir compte de l’évolution de la perméabilité et la compressibilité du milieu fibreux au cours de l’infusion. Diverses confrontations entre le modèle numérique proposé, des méthodes analytiques et expérimentales ont été menées. Une application du modèle dans la simulation de l’infusion d’un démonstrateur industriel de géométrie complexe est également réalisée. Les résultats obtenus sont très encourageants et révèlent l’efficacité de l’outil développé dans la simulation du procédé d’infusion / The aim of this work is to model the hydromechanical coupling that exists between the preform compressibility and the resin flow in order to simulate the infusion processes. The numerical method used in this study is based on the Control Volume Finite Elements Method (CVFEM) in 2D½. A new modelling approach of the infusion process is proposed. In this method, we introduced 1D elements to include through-the-thickness flow. This approach allows to reduce the computational time in comparison with full 3D modelling, especially in the simulation of industrial part infusion with large dimensions. The developed model is alimented by behavior laws that we characterized experimentally. These laws allow to take into account the evolution of the permeability and the compressibility of the fibrous medium during the infusion. We validated our model by comparing its results with analytical and experimental data. Additionally, an application of this simulation approach has been carried out to simulate the infusion of an industrial demonstrator with complex geometry. These comparisons show a good agreement between numerical and experimental results and reveal the efficiency of the developed tool in the infusion process simulation.

Page generated in 0.0135 seconds