• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation of the neutrophil chemoattractant interleukin-8 in inflammatory models of the rabbit heart and lung

Chivers, Simon January 1999 (has links)
No description available.
2

Development and characterization of humanized and human forms of ELR-CXC chemokine antagonist, bovine CXCL8(3-74)K11R/G31P

Zhao, Xixing 12 March 2009
Glu-Leu-Arg (ELR)-CXC chemokine-mediated neutrophil migration and activation plays a key role in many inflammatory diseases. Dysregulated neutrophil activation often leads to inflammatory responses such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS).<p> Previously, we generated a bovine drug (i.e., bovine CXCL8(3-74)K11R/G31P, bG31P) by mutating the first two amino acids at the beginning of the N-terminus of bovine CXCL8/IL-8 and later substituting Arg for Lys11 and Pro for Gly31. Bovine G31P was shown to be a highly effective ELR-CXC chemokine and neutrophil antagonist in cattle & guinea pigs, but a human equivalent thereof would be of significantly more use in human medicine. Published studies on the structure and function of human CXCL8 suggest that human CXCL8(3-72)K11R/G31P (i.e., hG31P) would not be a particularly effective chemokine antagonist. Thus, development of a humanized form of bG31P became a primary goal. I first examined the effect of wholesale ligation of the carboxy half of hCXCL8 onto the amino half of bG31P and generated a human-bovine chimeric G31P (hbG31P; i.e., bCXCL8(3-44)K11R/G31P-hCXCL8(45-72)). I also made substitutions at each remaining human-discrepant amino acid (i.e., T3K, H13Y, T15K, E35A, and S37T) within the 5 half of the hbG31P cDNA. The results showed that hbG31P and its analogues blocked CXCL8-induced human neutrophil chemotactic responses, reactive oxygen intermediate (ROI) release, and intracellular calcium flux. Humanized bovine G31P was also shown to significantly block pulmonary neutrophilic pathology in a guinea pig model of airway endotoxemia.<p> As bG31P, hbG31P and its further humanized forms showed essentially equivalent ELR-CXC chemokine antagonist activity, Dr. Fang Li, Ms Jennifer Town and I then generated a fully human form of bG31P, hG31P. <i>In vitro</i>, hG31P was shown to effectively inhibit CXCL-1-, -5-, and -8-induced neutrophil chemotactic responses, intracellular Ca2+ flux, and ROI release. Human G31P also desensitized heterologous G protein-coupled receptors (GPCR) including bacterial peptides (e.g., N-formyl-methionine-leucine-phenylalanine, fMLP), anaphylatoxin (e.g., complement 5a, C5a), lipid mediators (e.g., leukotriene B4, LTB4; platelet-activating factor, PAF) receptors. Moreover, hG31P, in a dose-dependent manner suppressed CXCL1 and CXCL8 expression by LPS-challenged airway epithelial cells and reversed the anti-apoptotic influence of ELR-CXC chemokines on neutrophils. <i>In vivo</i>, hG31P was significantly effective in blocking the pathology associated with airway endotoxemia, aspiration pneumonia, and intestinal ischemia and reperfusion injury, including neutrophil recruitment (70-95% reduction) into, and activation within, the airways or gut, chemokine or cytokine expression, and pulmonary vascular complications. The blockade of neutrophil recruitment by hG31P in aspiration pneumonia animals did not increase airway bacterial growth. The G31P treatment was protective in both mesenteric (i.e., local) and remote organ injury. These findings suggest that hG31P is not only a potent neutrophil antagonist, but an effective blocker of other inflammatory responses. These comprehensive anti-inflammatory effects indicate that hG31P could potentially provide a viable therapeutic approach for inflammatory diseases such as ALI /ARDS.
3

Development and characterization of humanized and human forms of ELR-CXC chemokine antagonist, bovine CXCL8(3-74)K11R/G31P

Zhao, Xixing 12 March 2009 (has links)
Glu-Leu-Arg (ELR)-CXC chemokine-mediated neutrophil migration and activation plays a key role in many inflammatory diseases. Dysregulated neutrophil activation often leads to inflammatory responses such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS).<p> Previously, we generated a bovine drug (i.e., bovine CXCL8(3-74)K11R/G31P, bG31P) by mutating the first two amino acids at the beginning of the N-terminus of bovine CXCL8/IL-8 and later substituting Arg for Lys11 and Pro for Gly31. Bovine G31P was shown to be a highly effective ELR-CXC chemokine and neutrophil antagonist in cattle & guinea pigs, but a human equivalent thereof would be of significantly more use in human medicine. Published studies on the structure and function of human CXCL8 suggest that human CXCL8(3-72)K11R/G31P (i.e., hG31P) would not be a particularly effective chemokine antagonist. Thus, development of a humanized form of bG31P became a primary goal. I first examined the effect of wholesale ligation of the carboxy half of hCXCL8 onto the amino half of bG31P and generated a human-bovine chimeric G31P (hbG31P; i.e., bCXCL8(3-44)K11R/G31P-hCXCL8(45-72)). I also made substitutions at each remaining human-discrepant amino acid (i.e., T3K, H13Y, T15K, E35A, and S37T) within the 5 half of the hbG31P cDNA. The results showed that hbG31P and its analogues blocked CXCL8-induced human neutrophil chemotactic responses, reactive oxygen intermediate (ROI) release, and intracellular calcium flux. Humanized bovine G31P was also shown to significantly block pulmonary neutrophilic pathology in a guinea pig model of airway endotoxemia.<p> As bG31P, hbG31P and its further humanized forms showed essentially equivalent ELR-CXC chemokine antagonist activity, Dr. Fang Li, Ms Jennifer Town and I then generated a fully human form of bG31P, hG31P. <i>In vitro</i>, hG31P was shown to effectively inhibit CXCL-1-, -5-, and -8-induced neutrophil chemotactic responses, intracellular Ca2+ flux, and ROI release. Human G31P also desensitized heterologous G protein-coupled receptors (GPCR) including bacterial peptides (e.g., N-formyl-methionine-leucine-phenylalanine, fMLP), anaphylatoxin (e.g., complement 5a, C5a), lipid mediators (e.g., leukotriene B4, LTB4; platelet-activating factor, PAF) receptors. Moreover, hG31P, in a dose-dependent manner suppressed CXCL1 and CXCL8 expression by LPS-challenged airway epithelial cells and reversed the anti-apoptotic influence of ELR-CXC chemokines on neutrophils. <i>In vivo</i>, hG31P was significantly effective in blocking the pathology associated with airway endotoxemia, aspiration pneumonia, and intestinal ischemia and reperfusion injury, including neutrophil recruitment (70-95% reduction) into, and activation within, the airways or gut, chemokine or cytokine expression, and pulmonary vascular complications. The blockade of neutrophil recruitment by hG31P in aspiration pneumonia animals did not increase airway bacterial growth. The G31P treatment was protective in both mesenteric (i.e., local) and remote organ injury. These findings suggest that hG31P is not only a potent neutrophil antagonist, but an effective blocker of other inflammatory responses. These comprehensive anti-inflammatory effects indicate that hG31P could potentially provide a viable therapeutic approach for inflammatory diseases such as ALI /ARDS.
4

The effects of an ELR+CXC chemokine antagonist in a model of experimental arthritis

2013 September 1900 (has links)
Rheumatoid arthritis is an autoimmune disease that can cause chronic inflammation of the joints and other areas of the body. Neutrophils contribute to the pathogenesis of arthritis, and are recruited to the site of inflammation by chemokines. CXCL8/IL-8 is a member of a sub-family of chemokines (ELR+CXC chemokines) that activate and attract neutrophils through the CXCR1 and CXCR2 receptors. Our lab developed a high affinity human CXCR1/CXCR2 antagonist, called human CXCL8(3-72)K11R/G31P (hG31P). This antagonist has been shown to be highly effective in blocking ELR+CXC chemokine-driven neutrophilic inflammation. In this study we looked at the therapeutic effect of blocking ELR+CXC chemokine receptors (CXCR1 and CXCR2) in an experimental model of arthritis. We induced type II collagen (CII)-induced arthritis (CIA) in mice and treated them with hG31P after the onset of disease. The parameters we looked at to assess disease severity were clinical scores (paws were graded on the severity of edema), clinical measurements (measuring inflammation by change in circumference of paw), serum levels of anti-CII antibodies, and inflammatory cytokines mRNA (IL-1β, TNF, KC, and MIP-2) and protein levels (IL-1β, IL-6, KC, and MIP-2) in paw tissue. Initially, when we analyzed all mice together, we were unable to see a change in clinical scores and measurement when CIA mice were treated with hG31P. All CIA mice did not develop arthritis simultaneously, but rather in a serendipitous fashion; therefore we subdivided our mice and analyzed data from mice that developed arthritis early versus those that developed it late. Treatment with hG31P in mice that developed arthritis early (within 5 weeks of initial CII injection) significantly reduced clinical scores (p=0.02) in one, but not both, of our experiments. When CIA mice were treated with hG31P we saw a significant reduction (p<0.05) in CII-specific IgG1 and MIP-2 protein levels in one of our experiments. Our results were variable and we did not see these changes in our other experiment. Treatment of CIA mice with G31P did not significantly affect inflammatory cytokine mRNA levels in the paws. During this study we found the production of anti-hG31P antibodies in our hG31P-treated mice. We used a Ca2+ influx assay to determine if these hG31P antibodies were neutralizing. When these antibodies were non-neutralizing we were able to see a significant reduction in the clinical scores (p=0.02) of our hG31P-treated CIA mice (that had developed early-onset arthritis) when compared to our saline-treated CIA mice. In the experiment in which we detected significant levels of neutralizing anti-hG31P antibodies, treatment with hG31P did not affect the clinical scores of our CIA mice. Although we cannot definitively say that hG31P has a therapeutic effect in CIA, we believe this line of research merits further investigation. Our research suggests to us that after some experimental refinement and reduction of the immune response mounted to hG31P, there could still be potential for hG31P to have a therapeutic effect in arthritis.
5

Study of the Structure and Function of CXC Chemokine Receptor 2

Kwon, Hae Ryong 01 December 2010 (has links)
It has been shown that the amino terminus and second extracellular loop (EC2) of CXCR2 are crucial for ligand binding and receptor activation. The lack of an ionic lock motif in the third intracellular loop of CXCR2 focuses an investigation of the mechanism by which these two extracellular regions contribute to receptor recognition and activation. The first objective of this investigation was to predict the structure of CXCR2 based on known structures of crystallized GPCRs. Rhodopsin, β2-adrenergic receptor, CXCR4 were used for homology modeling of CXCR2 structure. Highly conserved motifs found in sequence alignments of the template GPCRs were helpful to generate CXCR2 models. We also studied solvent accessibility of residues in the EC2 of CXCR2 in the inactive state. Most of the residues in the EC2 were found to be solvent accessible in the inactive state, suggesting the residues might be involved in ligand recognition. Second, we studied the role of charged residues in the EC2 of CXCR2 in ligand binding and receptor activation using constitutively active mutants (CAM) of CXCR2, D9K and D9R. Combinatorial mutations consisting of the CAM in the amino terminus and single mutations of charged residues in the EC2 were generated to study two concepts including “attraction” and “repulsion” models. The mutant receptors were used to test their effects on cell surface expression, ligand binding, receptor activation through PLC-β3, and cellular transformation. All the mutations in the repulsion model result in CXCR2 receptors that are unable to bind ligand, suggesting that each of the Arg residues in the EC2 are important for ligand recognition. Interestingly, mutations in the attraction model partially inhibited receptor activation by the CAM D9K, suggesting that Glu198 and Asp199 residues in the EC2 are associated with receptor activation. Furthermore, a novel CAM, E198A/D199A, was identified in this study. These negatively charged residues are very close to a conserved disulfide bond linking the EC2 and the third transmembrane. In this sense, these current discoveries concerning the structural basis of CXCR2 and interdisciplinary approaches would provide new insights to investigate unknown mechanisms of interaction with its cognate ligands and receptor activation.

Page generated in 0.0427 seconds