1 |
Regulation of cardiac responses to increased load:role of endothelin-1, angiotensin II and collagen XVPiuhola, J. (Jarkko) 14 July 2002 (has links)
Abstract
Chronic overload of the heart is the major cause of left ventricular hypertrophy (LVH) and eventually heart failure. It is generally accepted that autocrine/paracrine factors, such as angiotensin II (Ang II) and endothelin-1 (ET-1) contribute to the development of LVH. Cardiac hypertrophy and failure are characterized by attenuated responsiveness to β- adrenergic stimulation and accumulation of collagenous material to the left ventricular wall. The present study aimed to characterize the roles of ET-1 and Ang II in the regulation of cardiac function. The role of the plasmamembrane Ca2+-ATPase (PMCA) in ET-1 induced cardiac responses and the role of type XV collagen in cardiac function were also studied.
Both ET-1 infusion and mechanical loading were able to induce positive inotropic effect and induction of early response genes in isolated perfused hearts. ET-1 also induced strong vasoconstriction. Cardiomyocyte-specific PMCA overexpression inhibited the ET-1 induced hypertrophic response, while inotropic response remained unaltered. ET-1 was found to induce release of adrenomedullin (AM), a potent vasorelaxing and inotropic peptide. Infusion of AM antagonized the vasoconstrictive effect of ET-1 independently of nitric oxide. In hypertrophied rat hearts ET-1 was found to contribute significantly to the Frank-Starling response, a fundamental mechanism regulating contractile performance of the heart. In mice hearts, ET-1 was found to play a dual role in load induced elevation of contractile strength: ETA receptors mediated an increase, while ETB receptors mediated an inhibitory effect on contrcatile force. Ang II was not contributing to the contractile response to load in either rat or mice hearts. Blunted response to β-adrenergic stimulus and increased vulnerability as a result of exercise was observed in mice lacking collagen XV.
In conclusion, the present results underscore the importance of the local factors, especially ET-1, in regulation of cardiac function, not only in terms of hypertrophic but also in terms of contractile response to load. The results also suggest a role for PMCA in regulation of cardiac function. Lack of type XV collagen was found to result in cardiac dysfunction with many features similar to those of early heart failure.
|
2 |
Roles of PMCA Isoforms in Ca<sup>2+</sup>-Homeostasis and Contractility of Bladder Smooth Muscle: Evidence from PMCA Gene-Ablated MiceLiu, Li 27 June 2007 (has links)
No description available.
|
3 |
Intracellular calcium stores and sodium-calcium exchanger in cardiac myocytes:experimental and computer simulation studyHan, C. (Chunlei) 27 November 2001 (has links)
Abstract
Cytosolic Ca2+,
[Ca2+]I , has a key role in intracellular
signalling during excitation-contraction coupling (E-C coupling) in cardiac myocytes. The
sarcoplasmic reticulum (SR) is a main intracellular Ca2+ store
and the Na+-Ca2+ exchanger (NaCaX) is
a major mechanism to extrude Ca2+ for balancing the
Ca2+ influx via L-type Ca2+ channels
during excitation. Furthermore, [Ca2+]I
also affects the configuration of the action potential (AP). The present study, by
combination of animal experiments and computer simulations, investigated the roles of
[Ca2+]I, SR and NaCaX in cardiac
myocytes, in Ca2+-induced Ca2+
release (CICR) and in modulation
of APs. The following were studied: (I) the stretch-induced effects on rat atrium and the
role of [Ca2+]I in modulation of AP; (II)
the role of the SR in modulation in rat atrium by stretch; (III) the role of NaCaX; (IV)
the role of [Ca2+]I in modulation of
action potential duration (APD) in myocytes with short and long action potential duration.
In isolated rat atrial preparations, the physiological or moderate stretch stimulus
caused two- phasic rise of developed contraction, rapid and slow phases, accompanied with
slow increments of [Ca2+]I and
prolongations of action potentials durations in continuous recordings. In sustained stretch,
the APD and [Ca2+]I were all increased
significantly when intra-atrial pressure increased from 1 to 3 mmHg. In computer
simulations, employing a rat atrial model (RA model), it was found that stretch-activated
channels and increased Tn C affinity for Ca2+ alone could not
produce the changes in the
experiments. Only after both mechanisms applied to model cells, the main experimental
findings could be mimicked (I). The prolongation of APD induced by stretch in rat atrial
preparations was reversed after depleting the Ca2+ content of
the SR by application of the
SR functional inhibitors, ryanodine, thapsigargin and caffeine (II). In the computer
simulation using modified guinea pig ventricular model, the Ca2+
entry via the reversal of NaCaX was found to be accounting 25% of the total activator
Ca2+ for triggering Ca2+ release
from the SR during normal excitation. This contribution increases with elevated
[Na+]i (III). In a guinea pig ventricular
model (GPV model) and a RA model were employed for investigating the regulation of APD by
[Ca2+]I-dependent membrane currents.
Increased SR Ca2+ content produced an elevated
[Ca2+]I in both model cells, leading to
prolongation of APD in the RA model but shortening in the GPV model. Increased
[Ca2+]I enhances the NaCaX current in the
same scale in both models, but inhibits L-type Ca current much more in the GPV model than
the RA model (IV).
In conclusion, (I) Stretch-induced [Ca2+]I
increase prolongs the rat atrial AP by enhancing the NaCaX inward current. Stretch-activated
channels (SACs) and increased affinity of TnC for Ca2+ are
main general factors responsible for the variety of changes of cardiac muscles induced by
stretch. (II) The SR plays a crucial role in the modulation of myocytes by accumulating the
additional Ca2+ influx via sarcolemma during stretch. (III)
The NaCaX contributes a small part for activator Ca2+ for
calcium release from the SR during normal cardiac E-C coupling. However, this contribution
is [Na]i-dependent, and in some pathological conditions, it may be a potential factor for
cardiac arrhythmogenesis. (IV) Different effects on the NaCaX and L-type channels induced by
increased [Ca2+]I leads to the dispersion
of the change of APD in myocytes with long and short AP during inotropic interventions that
increase the [Ca2+]I.
|
4 |
THE FUNCTION OF CALCIUM/CALMODULIN DEPENDENT PROTEIN KINASE II IN CELL CYCLE REGULATIONBEAUMAN, SHIRELYN RAE 30 June 2003 (has links)
No description available.
|
5 |
Molecular Regulation of Inducible Nitric Oxide SynthaseWang, Tingting 18 December 2012 (has links)
No description available.
|
6 |
Adenovirus-mediated gene transfer of FK506-binding proteins FKBP12.6 and FKBP12 in failing and non-failing rabbit ventricular myocytes / Adenoviraler Gentransfer von FK506-bindenden Proteinen in insuffizienten und normalen Kaninchen ventrikulärer MyozytenZibrova, Darya 25 June 2004 (has links)
No description available.
|
7 |
Optical Analysis of [Ca<sup>2+</sup>]i and Mitochondrial Signaling Pathways: Implications for the Selective Vulnerability of Motoneurons in Amyotrophic Lateral Sclerosis (ALS) / Optische Analysen von [Ca<sup>2+</sup>]i und mitochondrialen Signalwegen: Untersuchungen zur selektiven Verwundbarkeit von Motoneuronen in der amyotrophen Lateralsklerose (ALS)Jaiswal, Manoj Kumar 23 January 2008 (has links)
No description available.
|
8 |
Myocardial infarction:aspects relating to endogenous and exogenous melatonin and cardiac contractilitySallinen, P. (Pirkko) 18 March 2008 (has links)
Abstract
Melatonin is an important modulator of several physiological and behavioural processes, and it influences the function of many different tissues. Melatonin has effective antioxidative properties, but some of its actions in mammals are also mediated through the MT1 and MT2 melatonin receptors. Antioxidative properties are seen especially when the melatonin concentration is high (≥ nM), and melatonin's affinity for its receptors appears at lower concentrations (pM).
Recently, the involvement of melatonin in protecting the heart against cardiac diseases, including myocardial infarction (MI), has been brought out. MI alters the structure and function of myocardium, attenuating for example cardiac contractility by affecting the amount and function of the essential Ca2+ handling proteins, dihydropyridine receptor (DHPR), ryanodine receptor (RyR2) and sarco-endoplasmic reticulum (SR) Ca2+-ATPase2 (SERCA2). MI also evokes many adaptive responses in organisms, such as elevated production of atrial and brain natriuretic peptides (ANP and BNP).
In this thesis, the expression of MT1 and MT2 receptor mRNAs was investigated in several rat tissues. Furthermore, the effect of MI and exogenous melatonin on the rat endogenous melatonin and on the expression of cardiac MT1, MT2, DHPR, RyR2 and SERCA2 proteins was evaluated. The concentrations of ANP and BNP were also measured after post-MI melatonin administration.
The results show the expression of MT1 and/or MT2 receptor mRNAs in the hypothalamus, retina, small intestine, liver and heart, which indicates that at least some effects of melatonin could be mediated through the receptors in these tissues. Melatonin synthesis in the pineal gland increased rapidly in response to MI, supporting an important role of endogenous melatonin in protecting the heart after MI. Furthermore, exogenous melatonin altered the mRNA expression of DHPR, RyR2 and SERCA2 after MI, suggesting that melatonin might contribute to the post-infarction cardiac contractile function. The results also revealed a novel, positive relationship between melatonin and ANP, and thereby bring out one more possible way of melatonin to protect the heart against MI-induced injuries.
Taken together, the present thesis (i) supports the notion that melatonin is an important endogenous protective agent of the organism, and (ii) extends our knowledge of melatonin's post-infarction cardioprotective actions. / Tiivistelmä
Melatoniini osallistuu monien fysiologisten toimintojen ja käyttäytymisen säätelyyn sekä vaikuttaa useiden eri kudosten toimintaan. Melatoniini on tehokas antioksidantti, mutta jotkut sen vaikutuksista välittyvät myös MT1 ja MT2 melatoniini reseptorien kautta. Antioksidatiiviset vaikutukset tulevat esiin erityisesti silloin, kun melatoniinin pitoisuus on korkea (≥ nM). Alhaisemmilla pitoisuuksilla (pM) on puolestaan havaittavissa melatoniinin sitoutuminen reseptoreihinsa.
Viime aikoina on tullut esille melatoniinin mahdollinen suojavaikutus sydänsairauksia, kuten sydäninfarkteja, vastaan. Sydäninfarkti muuttaa sydänlihaksen rakennetta ja toimintaa esimerkiksi vaikuttamalla supistuksen kannalta välttämättömien proteiinien, dihydropyridiini reseptorin (DHPR), ryanodiini reseptorin (RyR2) ja sarko-endoplasmakalvoston Ca2+-ATPaasi2:n (SERCA2) lukumääriin ja toimintaan, ja sitä kautta muun muassa heikentää sydämen supistuvuutta. Sydäninfarkti laukaisee elimistössä myös monia adaptiivisia vasteita, kuten eteispeptidin (ANP) ja aivojen natriureettisen peptidin (BNP) lisääntyneen erityksen.
Tässä väitöstyössä tutkittiin MT1 ja MT2 reseptorien mRNAn ilmentymistä useissa rotan eri kudoksissa. Lisäksi tutkittiin sydäninfarktin ja eksogeenisen melatoniinin vaikutuksia rotan endogeeniseen melatoniiniin sekä sydämen MT1, MT2, DHPR, RyR2 ja SERCA2 proteiinien ekspressioon. Myös ANP ja BNP pitoisuudet mitattiin.
Tulokset osoittivat MT1 ja/tai MT2 reseptori mRNAn ilmentymisen hypotalamuksessa, silmän verkkokalvolla, ohutsuolessa, maksassa ja sydämessä, minkä perusteella ainakin osa melatoniinin vaikutuksista saattaisi olla reseptorivälitteisiä näissä kudoksissa. Tulosten mukaan käpyrauhasen melatoniinisynteesi lisääntyi nopeasti sydäninfarktin jälkeen, mikä tukee käsitystä endogeenisen melatoniinin tärkeästä roolista infarktin jälkeisessä sydämen suojauksessa. Lisäksi eksogeeninen melatoniini muutti DHPR:n, RyR2:n ja SERCA2:n mRNA ekspressiota infarktin jälkeen, mikä voisi merkitä, että melatoniini saattaa vaikuttaa infarktin jälkeiseen sydämen supistuvuuteen. Tulosten osoittama positiivinen riippuvuus melatoniinin ja ANP:n välillä tuo puolestaan esille yhden uuden mahdollisen keinon, jonka kautta melatoniini voisi suojata sydäntä infarktin aiheuttamia vaurioita vastaan.
Yhteenvetona voidaan todeta, että tämä väitöstyö (i) tukee käsitystä, että endogeenisella melatoniinilla on tärkeä merkitys elimistön suojaamisessa, ja (ii) laajentaa tietämystämme infarktin jälkeisistä melatoniinin sydäntä suojaavista vaikutuksista.
|
Page generated in 0.1132 seconds