• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização da bioconversão de lactose do soro de queijo em etanol em sistemas de biorreatores imobilizados

Gabardo, Sabrina January 2011 (has links)
O soro de queijo, um subproduto industrial altamente poluidor, constitui-se em um substrato rico em nutrientes e de grande potencial de aproveitamento em bioprocessos. A utilização de substratos alternativos e de baixo custo para a produção de etanol, tais como resíduos industriais, vem sendo recentemente estudada, com resultados promissores. Diante deste contexto, o presente trabalho teve como objetivo otimizar a bioconversão do soro de queijo em etanol em biorreatores imobilizados usando Kluyveromyces marxianus como biocatalisador e avaliar as limitações de transferência de massa em esferas de alginato de cálcio mediante o cálculo do coeficiente de difusão. Valores similares do fator de conversão da lactose em etanol, YEtOH/S, (0,44±0,01 g g -1) foram encontrados ao testar a produção do etanol por três linhagens de K. marxianus (CBS 6556, CCT 4086 e CCT 2653) em biorreator de leito fluidizado em regime batelada, e uma diminuição na eficiência de conversão (83,3- 66,1%) e na produtividade volumétrica (0,96 a 0,78 g L-1h-1) foi observada ao aumentar a temperatura de fermentação (30-40ºC) utilizando K. marxianus CBS 6556 imobilizada. Em seguida, foram testados biorreatores de leito fixo e fluidizado operados continuamente por diferentes taxas de diluição (0,1-0,3 h-1). Os valores indicaram que o aumento da taxa de diluição leva a um decréscimo da utilização de lactose e da produção de etanol e um aumento da produtividade volumétrica (QP). Valores semelhantes do fator de conversão de lactose em etanol (YEtOH/S) foram encontrados para todas as taxas de diluição testadas, em ambos sistemas de biorreator (fixo e fluidizado). A maior produtividade volumétrica foi obtida para a taxa de diluição de 0,3 h-1 em biorreator de leito fluidizado, alcançando 87% da conversão teórica, e a maior concentração de etanol (27,9 g L-1) foi obtida com a taxa de diluição de 0,1 h-1. As imagens de microscopia eletrônica de varredura (MEV) na superfície das esferas mostraram que a imobilização em alginato de cálcio foi eficaz. O estudo da transferência de massa da lactose e do etanol em esferas de cálcio foi realizado através da medição do coeficiente de difusão com base na abordagem matemática da Segunda Lei de Fick. Diferentes condições experimentais foram testadas. Os resultados obtidos mostraram que o coeficiente de difusão independe da concentração da solução de lactose (25, 50 e 75 g L-1) e de etanol (25 e 50 g L- 1), bem como da concentração de alginato (3, 4 e 6%), e que é afetado pela temperatura (25, 30 e 35 ºC), aumentando de 4,67×10-10 m2 s-1 a 6,96×10-10 m2 s-1 para a lactose, e de 1,46×10-10 m2 s-1 a 2,68×10-10 m2 s-1 para o etanol. / Cheese whey, an industrial by-product with highly pollutant characteristics, is a substrate for cell growth, rich in nutrients and with great potential for use in bioprocesses. The utilization of alternative and low cost substrates for the production of ethanol, such as industrial waste, has been recently studied with promising results. In this context, the aim of this work was to optimize the bioconversion of cheese whey into ethanol in bioreactors using immobilized Kluyveromyces marxianus as biocatalyst and evaluate the mass transfer limitations in Ca-alginate beads by measuring the diffusion coefficient. Similar ethanol yields (0.44±0.01 g EtOH g sugar-1) were found when testing the ethanol production by three strains of K. marxianus (CBS 6556, CCT 4086 and CCT 2653) in batch fluidized bed bioreactor, a decrease in conversion efficiency (83.3 to 66.1%) and ethanol productivity (0.96 to 0.78 g L- 1.h-1) was observed with the increase of fermentation temperature (30-40ºC) by immobilized K. marxianus CBS 6556. Continuous fluidized and packed bed bioreactors with different dilution rates (0.1 to 0.3 h-1) were performed. Values indicated that the increase of dilution rate led to a decrease in lactose utilization and ethanol production and an increase in ethanol productivity (QP). Similar ethanol yields (YEtOH/S) were obtained for all dilution rates tested, in both bioreactor systems. The highest ethanol productivity (3.5 g L-1h-1) was obtained at dilution rate of 0.3 h-1 in the fluidized bed bioreactor, with 87% of the theoretical conversion. The highest ethanol concentration (27.9 g L-1) was obtained at dilution rate of 0.1 h-1. The SEM micrographies of beads demonstrated that the cell immobilization in the Ca-alginate was effective. Lactose and ethanol mass transfer studies in Ca-alginate beads was performed by measuring the diffusion coefficient based on the mathematical approach of the Fick’s second Law. Different experimental conditions were tested. Results showed that diffusion coefficients were independent from the concentration of lactose (25, 50 and 75 g L-1) and ethanol (25 and 50 g L-1), as well as from the concentration of Ca-alginate (3, 4 and 6%), but were affected by temperature, increasing from 4.67×10-10 m2 s-1 to 6.96×10-10 m2 s-1 for lactose, and from 1.46×10-10 m2 s-1 to 2.68×10-10 m2 s-1 for ethanol.
2

Otimização da bioconversão de lactose do soro de queijo em etanol em sistemas de biorreatores imobilizados

Gabardo, Sabrina January 2011 (has links)
O soro de queijo, um subproduto industrial altamente poluidor, constitui-se em um substrato rico em nutrientes e de grande potencial de aproveitamento em bioprocessos. A utilização de substratos alternativos e de baixo custo para a produção de etanol, tais como resíduos industriais, vem sendo recentemente estudada, com resultados promissores. Diante deste contexto, o presente trabalho teve como objetivo otimizar a bioconversão do soro de queijo em etanol em biorreatores imobilizados usando Kluyveromyces marxianus como biocatalisador e avaliar as limitações de transferência de massa em esferas de alginato de cálcio mediante o cálculo do coeficiente de difusão. Valores similares do fator de conversão da lactose em etanol, YEtOH/S, (0,44±0,01 g g -1) foram encontrados ao testar a produção do etanol por três linhagens de K. marxianus (CBS 6556, CCT 4086 e CCT 2653) em biorreator de leito fluidizado em regime batelada, e uma diminuição na eficiência de conversão (83,3- 66,1%) e na produtividade volumétrica (0,96 a 0,78 g L-1h-1) foi observada ao aumentar a temperatura de fermentação (30-40ºC) utilizando K. marxianus CBS 6556 imobilizada. Em seguida, foram testados biorreatores de leito fixo e fluidizado operados continuamente por diferentes taxas de diluição (0,1-0,3 h-1). Os valores indicaram que o aumento da taxa de diluição leva a um decréscimo da utilização de lactose e da produção de etanol e um aumento da produtividade volumétrica (QP). Valores semelhantes do fator de conversão de lactose em etanol (YEtOH/S) foram encontrados para todas as taxas de diluição testadas, em ambos sistemas de biorreator (fixo e fluidizado). A maior produtividade volumétrica foi obtida para a taxa de diluição de 0,3 h-1 em biorreator de leito fluidizado, alcançando 87% da conversão teórica, e a maior concentração de etanol (27,9 g L-1) foi obtida com a taxa de diluição de 0,1 h-1. As imagens de microscopia eletrônica de varredura (MEV) na superfície das esferas mostraram que a imobilização em alginato de cálcio foi eficaz. O estudo da transferência de massa da lactose e do etanol em esferas de cálcio foi realizado através da medição do coeficiente de difusão com base na abordagem matemática da Segunda Lei de Fick. Diferentes condições experimentais foram testadas. Os resultados obtidos mostraram que o coeficiente de difusão independe da concentração da solução de lactose (25, 50 e 75 g L-1) e de etanol (25 e 50 g L- 1), bem como da concentração de alginato (3, 4 e 6%), e que é afetado pela temperatura (25, 30 e 35 ºC), aumentando de 4,67×10-10 m2 s-1 a 6,96×10-10 m2 s-1 para a lactose, e de 1,46×10-10 m2 s-1 a 2,68×10-10 m2 s-1 para o etanol. / Cheese whey, an industrial by-product with highly pollutant characteristics, is a substrate for cell growth, rich in nutrients and with great potential for use in bioprocesses. The utilization of alternative and low cost substrates for the production of ethanol, such as industrial waste, has been recently studied with promising results. In this context, the aim of this work was to optimize the bioconversion of cheese whey into ethanol in bioreactors using immobilized Kluyveromyces marxianus as biocatalyst and evaluate the mass transfer limitations in Ca-alginate beads by measuring the diffusion coefficient. Similar ethanol yields (0.44±0.01 g EtOH g sugar-1) were found when testing the ethanol production by three strains of K. marxianus (CBS 6556, CCT 4086 and CCT 2653) in batch fluidized bed bioreactor, a decrease in conversion efficiency (83.3 to 66.1%) and ethanol productivity (0.96 to 0.78 g L- 1.h-1) was observed with the increase of fermentation temperature (30-40ºC) by immobilized K. marxianus CBS 6556. Continuous fluidized and packed bed bioreactors with different dilution rates (0.1 to 0.3 h-1) were performed. Values indicated that the increase of dilution rate led to a decrease in lactose utilization and ethanol production and an increase in ethanol productivity (QP). Similar ethanol yields (YEtOH/S) were obtained for all dilution rates tested, in both bioreactor systems. The highest ethanol productivity (3.5 g L-1h-1) was obtained at dilution rate of 0.3 h-1 in the fluidized bed bioreactor, with 87% of the theoretical conversion. The highest ethanol concentration (27.9 g L-1) was obtained at dilution rate of 0.1 h-1. The SEM micrographies of beads demonstrated that the cell immobilization in the Ca-alginate was effective. Lactose and ethanol mass transfer studies in Ca-alginate beads was performed by measuring the diffusion coefficient based on the mathematical approach of the Fick’s second Law. Different experimental conditions were tested. Results showed that diffusion coefficients were independent from the concentration of lactose (25, 50 and 75 g L-1) and ethanol (25 and 50 g L-1), as well as from the concentration of Ca-alginate (3, 4 and 6%), but were affected by temperature, increasing from 4.67×10-10 m2 s-1 to 6.96×10-10 m2 s-1 for lactose, and from 1.46×10-10 m2 s-1 to 2.68×10-10 m2 s-1 for ethanol.
3

Otimização da bioconversão de lactose do soro de queijo em etanol em sistemas de biorreatores imobilizados

Gabardo, Sabrina January 2011 (has links)
O soro de queijo, um subproduto industrial altamente poluidor, constitui-se em um substrato rico em nutrientes e de grande potencial de aproveitamento em bioprocessos. A utilização de substratos alternativos e de baixo custo para a produção de etanol, tais como resíduos industriais, vem sendo recentemente estudada, com resultados promissores. Diante deste contexto, o presente trabalho teve como objetivo otimizar a bioconversão do soro de queijo em etanol em biorreatores imobilizados usando Kluyveromyces marxianus como biocatalisador e avaliar as limitações de transferência de massa em esferas de alginato de cálcio mediante o cálculo do coeficiente de difusão. Valores similares do fator de conversão da lactose em etanol, YEtOH/S, (0,44±0,01 g g -1) foram encontrados ao testar a produção do etanol por três linhagens de K. marxianus (CBS 6556, CCT 4086 e CCT 2653) em biorreator de leito fluidizado em regime batelada, e uma diminuição na eficiência de conversão (83,3- 66,1%) e na produtividade volumétrica (0,96 a 0,78 g L-1h-1) foi observada ao aumentar a temperatura de fermentação (30-40ºC) utilizando K. marxianus CBS 6556 imobilizada. Em seguida, foram testados biorreatores de leito fixo e fluidizado operados continuamente por diferentes taxas de diluição (0,1-0,3 h-1). Os valores indicaram que o aumento da taxa de diluição leva a um decréscimo da utilização de lactose e da produção de etanol e um aumento da produtividade volumétrica (QP). Valores semelhantes do fator de conversão de lactose em etanol (YEtOH/S) foram encontrados para todas as taxas de diluição testadas, em ambos sistemas de biorreator (fixo e fluidizado). A maior produtividade volumétrica foi obtida para a taxa de diluição de 0,3 h-1 em biorreator de leito fluidizado, alcançando 87% da conversão teórica, e a maior concentração de etanol (27,9 g L-1) foi obtida com a taxa de diluição de 0,1 h-1. As imagens de microscopia eletrônica de varredura (MEV) na superfície das esferas mostraram que a imobilização em alginato de cálcio foi eficaz. O estudo da transferência de massa da lactose e do etanol em esferas de cálcio foi realizado através da medição do coeficiente de difusão com base na abordagem matemática da Segunda Lei de Fick. Diferentes condições experimentais foram testadas. Os resultados obtidos mostraram que o coeficiente de difusão independe da concentração da solução de lactose (25, 50 e 75 g L-1) e de etanol (25 e 50 g L- 1), bem como da concentração de alginato (3, 4 e 6%), e que é afetado pela temperatura (25, 30 e 35 ºC), aumentando de 4,67×10-10 m2 s-1 a 6,96×10-10 m2 s-1 para a lactose, e de 1,46×10-10 m2 s-1 a 2,68×10-10 m2 s-1 para o etanol. / Cheese whey, an industrial by-product with highly pollutant characteristics, is a substrate for cell growth, rich in nutrients and with great potential for use in bioprocesses. The utilization of alternative and low cost substrates for the production of ethanol, such as industrial waste, has been recently studied with promising results. In this context, the aim of this work was to optimize the bioconversion of cheese whey into ethanol in bioreactors using immobilized Kluyveromyces marxianus as biocatalyst and evaluate the mass transfer limitations in Ca-alginate beads by measuring the diffusion coefficient. Similar ethanol yields (0.44±0.01 g EtOH g sugar-1) were found when testing the ethanol production by three strains of K. marxianus (CBS 6556, CCT 4086 and CCT 2653) in batch fluidized bed bioreactor, a decrease in conversion efficiency (83.3 to 66.1%) and ethanol productivity (0.96 to 0.78 g L- 1.h-1) was observed with the increase of fermentation temperature (30-40ºC) by immobilized K. marxianus CBS 6556. Continuous fluidized and packed bed bioreactors with different dilution rates (0.1 to 0.3 h-1) were performed. Values indicated that the increase of dilution rate led to a decrease in lactose utilization and ethanol production and an increase in ethanol productivity (QP). Similar ethanol yields (YEtOH/S) were obtained for all dilution rates tested, in both bioreactor systems. The highest ethanol productivity (3.5 g L-1h-1) was obtained at dilution rate of 0.3 h-1 in the fluidized bed bioreactor, with 87% of the theoretical conversion. The highest ethanol concentration (27.9 g L-1) was obtained at dilution rate of 0.1 h-1. The SEM micrographies of beads demonstrated that the cell immobilization in the Ca-alginate was effective. Lactose and ethanol mass transfer studies in Ca-alginate beads was performed by measuring the diffusion coefficient based on the mathematical approach of the Fick’s second Law. Different experimental conditions were tested. Results showed that diffusion coefficients were independent from the concentration of lactose (25, 50 and 75 g L-1) and ethanol (25 and 50 g L-1), as well as from the concentration of Ca-alginate (3, 4 and 6%), but were affected by temperature, increasing from 4.67×10-10 m2 s-1 to 6.96×10-10 m2 s-1 for lactose, and from 1.46×10-10 m2 s-1 to 2.68×10-10 m2 s-1 for ethanol.
4

Vinification continue avec levures immobilisées : analyse du système et conception du réacteur industriel / Continuous wine-making with immobilized yeast cells : system analysis and industrial reactor design

Kassim Houssenaly, Caroline 27 February 2012 (has links)
Un nouveau procédé intensifié de vinification continue avec un mélange de levures S.cerevisiae et Sch.pombe immobilisées dans des billes d’alginate est proposé. A l’échelle laboratoire, l’étude de la teneur en billes et de la configuration du réacteur conduit à l’obtention d’un réacteur de type lit fixe permettant une production de vin en 35 heures. Des validations du procédé aux échelles pilote (170 L) puis industrielle (120 hL) montrent que, en cave, du vin de qualité semblable au témoin est produit en 2 à 3 jours. Une analyse du comportement du réacteur a identifié des raisons de pertes de performances liées à l’hydrodynamique lors du changement d’échelle ainsi que des axes améliorations possibles. Ce procédé permet d’obtenir un vin de qualité maitrisée et un gain de temps de plusieurs semaines / From a batch to another, produced wines are usually different because of the different alcoholic and malolactic fermentation courses. To blend wines quality and continue wine production industrialization, a new continuous process, using Ca-alginate immobilized yeast cells, was developed for red wine-making. Working with a blending of S.cerevisiae and Sch.pombe allowed the regrouping of the alcoholic and malolactic fermentations in a unique step. After testing different reactor set-ups at lab scale, the selected process, a vertical bed reactor, was used in real wine-making conditions, firstly in a pilot reactor (170 L) and then in an industrial one (120 hL). The results showed that continuous wine-making was possible in 2 to 3 days. The wine presented nearly the same sensory profile compared to a classical one. Thanks to the analysis of the reactor behaviour, we were able to explain the efficiency losses linked to the hydrodynamic, observed during the scale-up. This new intensified process enables to obtain a wine with a controlled quality and to save several weeks of production time
5

Biochemical processes for Balsamic-styled vinegar engineering

Hutchinson, Ucrecia Faith January 2019 (has links)
Thesis (PhD (Chemical Engineering))--Cape Peninsula University of Technology, 2019 / The South African wine industry is constantly facing several challenges which affect the quality of wine, the local/global demand and consequently the revenue generated. These challenges include the ongoing drought, bush fires, climate change and several liquor amendment bills aimed at reducing alcohol consumption and alcohol outlets in South Africa. It is therefore critical for the wine industry to expand and find alternative ways in which sub-standard or surplus wine grapes can be used to prevent income losses and increase employment opportunities. Traditional Balsamic Vinegar (TBV) is a geographically and legislative protected product produced only in a small region in Italy. However, the methodology can be used to produce similar vinegars in other regions. Balsamic-styled vinegar (BSV), as defined in this thesis, is a vinegar produced by partially following the methods of TBV while applying process augmentation techniques. Balsamic-styled vinegar is proposed to be a suitable product of sub-standard quality or surplus wine grapes in South Africa. However, the production of BSV necessitates the use of cooked (high sugar) grape must which is a less favourable environment to the microorganisms used during fermentation. Factors that negatively affect the survival of the microorganisms include low water activity due to the cooking, high osmotic pressure and high acidity. To counteract these effects, methods to improve the survival of the non-Saccharomyces yeasts and acetic acid bacteria used are essential. The primary aim of this study was to investigate several BSV process augmentation techniques such as, aeration, agitation, cell immobilization, immobilized cell reusability and oxygen mass transfer kinetics in order to improve the performance of the microbial consortium used during BSV production. The work for this study was divided into four (4) phases. For all the phases a microbial consortium consisting of non-Saccharomyces yeasts (n=5) and acetic acid bacteria (n=5) was used. Inoculation of the yeast and bacteria occurred simultaneously. The 1st phase of the study entailed evaluating the effect of cells immobilized by gel entrapment in Ca-alginate beads alongside with free-floating cells (FFC) during the production of BSV. Two Ca-alginate bead sizes were tested i.e. small (4.5 mm) and large (8.5 mm) beads to evaluate the effects of surface area or bead size on the overall acetification rates. Ca-alginate beads and FFC fermentations were also evaluated under static and agitated (135 rpm) conditions. The 2nd phase of the study involved studying the cell adsorption technique for cell immobilization which was carried-out using corncobs (CC) and oak wood chips (OWC), while comparing to FFC fermentations. At this phase of the study, other vinegar bioreactor parameters such as agitation and aeration were studied in contrast to static fermentations. One agitation setting (135 rpm) and two aeration settings were tested i.e. high (0.3 vvm min−1) and low (0.15 vvm min−1) aeration conditions. Furthermore, to assess the variations in cell adsorption capabilities among individual yeast and AAB cells, the quantification of cells adsorbed on CC and OWC prior- and post-fermentation was conducted using the dry cell weight method. The 3rd phase of the study entailed evaluating the reusability abilities of all the matrices (small Ca-alginate beads, CC and OWC) for successive fermentations. The immobilized cells were evaluated for reusability on two cycles of fermentation under static conditions. Furthermore, the matrices used for cell immobilization were further analysed for structure integrity by scanning electron microscopy (SEM) before and after the 1st cycle of fermentations. The 3rd phase of the study also involved the sensorial (aroma and taste) evaluations of the BSV’s obtained from the 1st cycle of fermentation in order to understand the sensorial effects of the Ca-alginate beads, CC and OWC on the final BSV. The 4th phase of the study investigated oxygen mass transfer kinetics during non-aerated and aerated BSV fermentation. The dynamic method was used to generate several dissolved oxygen profiles at different stages of the fermentation. Consequently, the data obtained from the dynamic method was used to compute several oxygen mass transfer parameters, these include oxygen uptake rate ( 𝑟𝑟𝑂𝑂2 ), the stoichiometric coefficient of oxygen consumption vs acid yield (𝑌𝑌𝑂𝑂/𝐴𝐴), the oxygen transfer rate (𝑁𝑁𝑂𝑂2 ), and the volumetric mass transfer coefficients (𝐾𝐾𝐿𝐿𝑎𝑎). During all the phases of the study samples were extracted on weekly intervals to evaluate pH, sugar, salinity, alcohol and total acidity using several analytical instruments. The 4th phase of the study involved additional analytical tools, i.e. an oxygen µsensor to evaluate dissolved oxygen and the ‘Speedy breedy’ to measure the respiratory activity of the microbial consortium used during fermentation. The data obtained from the 1st phase of the study demonstrated that smaller Ca-alginate beads resulted in higher (4.0 g L-1 day−1) acetification rates compared to larger (3.0 g L-1 day−1) beads, while freely suspended cells resulted in the lowest (0.6 g L-1 day−1) acetification rates. The results showed that the surface area of the beads had a substantial impact on the acetification rates when gel entrapped cells were used for BSV fermentation. The 2nd phase results showed high acetification rates (2.7 g L-1 day−1) for cells immobilized on CC in contrast to cells immobilized on OWC and FFC, which resulted in similar and lower acetification rates. Agitated fermentations were unsuccessful for all the treatments (CC, OWC and FFC) studied. Agitation was therefore assumed to have promoted cell shear stress causing insufficient acetification during fermentations. Low aerated fermentations resulted in better acetification rates between 1.45–1.56 g L-1 day−1 for CC, OWC and FFC. At a higher aeration setting, only free-floating cells were able to complete fermentations with an acetification rate of 1.2 g L-1 day−1. Furthermore, the adsorption competence data showed successful adsorption on CC and OWC for both yeasts and AAB with variations in adsorption efficiencies, whereby OWC displayed a lower cell adsorption capability compared to CC. On the other hand, OWC were less efficient adsorbents due to their smooth surface, while the rough surface and porosity of CC led to improved adsorption and, therefore, enhanced acetification rates. The 3rd phase results showed a substantial decline in acetification rates on the 2nd cycle of fermentations when cells immobilized on CC and OWC were reused. While cells entrapped in Ca-alginate beads were able to complete the 2nd cycle of fermentations at reduced acetification rates compared to the 1st cycle of fermentations. The sensory results showed positive ratings for BSV’s produced using cells immobilized in Ca-alginate beads and CC. However, BSV’s produced using OWC treatments were neither ‘liked nor disliked’ by the judges. The SEM imaging results further showed a substantial loss of structural integrity for Ca-alginate beads after the 1st cycle fermentations, with minor changes in structural integrity of CC being observed after the 1st cycle fermentations. OWC displayed the same morphological structure before and after the 1st cycle fermentations which was attributed to their robustness. Although Ca-alginate beads showed a loss in structural integrity, it was still assumed that Ca-alginate beads provided better protection against the harsh environmental conditions in contrast to CC and OWC adsorbents due to the acetification rates obtained on both cycles. The 4th phase data obtained from the computations showed that non-aerated fermentations had a higher 𝑌𝑌𝑂𝑂/𝐴𝐴, 𝑟𝑟𝑂𝑂2 , 𝑁𝑁𝑂𝑂2 and a higher 𝐾𝐾𝐿𝐿𝑎𝑎 . It was clear that aerated fermentations had a lower aeration capacity due to an inappropriate aeration system design and an inappropriate fermentor. Consequently, aeration led to several detrimental biochemical changes in the fermentation medium thus affecting 𝐾𝐾𝐿𝐿𝑎𝑎 and several oxygen mass transfer parameters which serve as a driving force. Overall, it was concluded that the best method for BSV production is the use of cells entrapped in small alginate beads or cells adsorbed on CC under static and non-aerated fermentations. This conclusion was based on several factors such as cell affinity/cell protection, acetification rates, fermentation period and sensorial contributions. However, cells entrapped in Ca-alginate beads had the highest acetification rates. The oxygen mass transfer computations demonstrated a high 𝐾𝐾𝐿𝐿𝑎𝑎 when Ca-alginate beads were used under static-non-aerated conditions compared to fermentations treated with CC. Therefore, a fermentor with a high aeration capacity needs to be designed to best suit the two BSV production systems (Ca-alginate beads and CC). It is also crucial to develop methods which can increase the robustness of Ca-alginate beads in order to improve cell retention and reduce the loss of structural integrity for subsequent cycles of fermentation. Studies to define parameters used for upscaling the BSV production process for large scale productions are also crucial.

Page generated in 0.0588 seconds