• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exchange Of Cadmium And Lead On Sodium Clinoptilolite Zeolite

Isler, Hakan Murat 01 May 2010 (has links) (PDF)
Heavy metal ions, such as cadmium and lead, should be removed from wastewaters to prevent bioaccumulation. Among many other separation processes, one of the alternatives is ion exchange involving a low cost packing material, clinoptilolite. Clinoptilolite is a natural zeolite and contains exchangeable cations such as Na+, K+, Mg2+, and Ca2+ in its structure. Aim of this study is to determine binary and multicomponent ion exchange behaviors of sodium enriched form of G&ouml / rdes clinoptilolite for lead and cadmium ions. For this purpose, Pb+2 &ndash / Na+, Cd+2 &ndash / Na+ binary and Pb+2 &ndash / Cd+2 &ndash / Na+ ternary systems were investigated in column operations for concentrations between 0.005 to 0.02 N and flow rates between 5 to 20 mL/min at 25 &amp / #730 / C. For determination of optimum particle size, 5/6, 8/10, 14/18, 20/30, 35/60, and 70/140 ASTM E-11 standard mesh ranges were tested and the optimum particle size, under the experimental conditions was found as 35/60. Furthermore, although the clinoptilolite has a theoretical ion exchange capacity of 2.14 meq/g based on its aluminum content, under experimental conditions maximum exchange level was determined as 1.08 meq/g. For binary and ternary experiments, it is observed that the clinoptilolite has affinity for both Pb2+ and Cd2+ ions. However, clinoptilolite has greater affinity to Pb2+ than Cd2+ ion. Therefore, selectivity sequence was determined as Pb2+&gt / Cd2+&gt / Na+. Additionally, for column studies, flow rates less than 10 mL/min and influent concentrations up to 0.01 N, sodium enriched form of G&ouml / rdes clinoptilolite holds great potential to remove Pb2+ and Cd2+ ions from wastewaters.
2

Bioremediation of Wastewater Using Microalgae

Chalivendra, Saikumar January 2014 (has links)
No description available.
3

The use of carbon nanotubes co-polymerized with calixarenes for the removal of cadmium and organic contaminants from water

Makayonke, Nozuko Thelma 02 May 2012 (has links)
M.Sc. / The contamination of water by toxic compounds is one of the most serious environmental problems today. These toxic compounds mostly originate from industrial effluents, agriculture runoff, natural sources (e.g. heavy metals in water from rocks and soil erosion) and human waste. The contamination, which is both “organic” and “inorganic” has an impact on the environment and human health. The demand for water and the pressure to re-use this valuable resource has increased the need for improved techniques and materials to remove pollutants from water. The Nanomaterials Science research group at the University of Johannesburg has focused on developing synthetic polymers that can be employed in water treatment and pollutant monitoring. Recently, cyclodextrins (CD) and carbon nanotubes (CNTs) have been included in polymers for this application. For example, CD-co-hexamethylene-/toluene-diisocyanate polyurethanes and CNT-modified equivalents have been developed and have been successfully applied in removing organic contaminants from water to very low levels.1 Calixarenes are synthetic analogues of cyclodextrins that can be exploited via chemical modification to express a range of properties. In the present study, calixarenes, thiacalixarenes and carbon nanotube-based polymeric materials incorporating these molecules have been synthesised, characterised and tested for removing both organic pollutants (such as p-nitrophenol) and inorganic pollutants (Cd2+, Pb2+) from water. Lead(II) and Cadmium(II) are a threat in South Africa because of their toxicity, and while p-nitrophenol is much less of a problem it represents a useful model organic pollutant. The absorption capacity of the polymers towards heavy metals and organic contaminants was tested by mixing the polymer with synthetic water containing known concentration of the contaminants at about 10 mg/L. Atomic absorption spectrometry (AAS) and ultraviolet-visible spectrometry (UV-vis) were used to determine the levels of heavy metals and organic contaminants, respectively. The target pollutants (Cd2+, 1 see KL Salipira MTech dissertation, University of Johannesburg 2008 Pb2+ and p-nitrophenol) were all successfully removed from water by the various polymers, however the degree of removal and loading capacities of the polymers differed. This information gives some insight into what functional components are needed for making successful adsorbents. It was observed, for example, that ptert- butylcalix[8]arene/hexamethylene diisocyanate (C8A/HMDI) had a higher adsorption capacity towards p-nitrophenol and Pb2+ than towards Cd2+, and also a higher capacity than the corresponding calix[4]arene polymers with smaller calixarene cavities.

Page generated in 0.0395 seconds