Spelling suggestions: "subject:"caffeine - etabolism"" "subject:"caffeine - emetabolism""
1 |
The effects of caffeine supplementation on strength and muscular endurance in resistance-trained womenUnknown Date (has links)
The purpose of this study was to determine the acute effects of caffeine supplementation on strength and muscular endurance in resistance-trained women. In a randomized manner, 15 women consumed caffeine (6 mg/kg) or placebo (PL) seven days apart. Sixty minutes following supplementation, participants performed a one repetition maximum (1RM) barbell bench press test and repetitions to failure at 60% of 1RM. Heart rate and blood pressure were assessed at rest, 60 minutes post-consumption, and immediately following completion of repetitions to failure. Repeated measures ANOVA indicated a significantly greater bench press maximum with caffeine (p<0.05) (52.9 « 11.1 kg vs. 52.1 « 11.7 kg) with no significant differences between conditions in 60% 1RM repetitions (p=0.81). Systolic blood pressure was significantly greater post-exercise, with caffeine (p<0.05) (116.8 « 5.3 mmHg vs. 112.9 « 4.9 mmHg). Our findings indicate a moderate dose of caffeine may be sufficient for enhancing strength performance in resistance-trained women. / by Erica R. Goldstein. / Thesis (M.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
2 |
Metabolism Of Caffeine And Its Analogues By A Mixed CultureSridhar, G R 09 1900 (has links) (PDF)
No description available.
|
3 |
Metabolism, enzymology, and genetic characterization of caffeine degradation by pseudomonas putida CBB5Summers, Ryan Michael 01 July 2011 (has links)
A novel caffeine-degrading bacterium, Pseudomonas putida CBB5 was isolated from the soil by an enrichment procedure using caffeine as the sole source of carbon and nitrogen. CBB5 grew not only on caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources, but also on theophylline and 3-methylxanthine. Analyses of metabolites in spent media, resting cell suspensions, and crude cell extracts confirmed that CBB5 degraded caffeine via N-demethylation to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N-demethylated to xanthine via 7-methylxanthine. A previously unreported pathway for N-demethylation of theophylline to 1- and 3-methylxanthines, followed by further N-demethylation to xanthine, was also discovered in CBB5.
A 240 kDa, Fe2+-dependent N-demethylase (Ndm) was purified from CBB5 by traditional chromatographic techniques. Ndm was composed of NdmA (40 kDa) and NdmB (35 kDa), which could not be resolved further. Ndm was active only in the presence of a partially purified protein which exhibited cytochrome c reductase activity (Ccr). Ccr transfered reducing equivalents from NAD(P)H to Ndm, which catalyzed an oxygen-dependent N-demethylation of methylxanthines to xanthine, formaldehyde and water. Ndm displayed N-demethylation activity toward all substrates in the caffeine and theophylline metabolic pathways. Ndm was deduced to be a Rieske [2Fe-2S]-domain-containing non-heme iron oxygenase base on its distinct absorption spectrum and significant identity of NdmA and NdmB sequences of other Rieske non-heme iron proteins.
The ndmA- and ndmB- gene sequences were determined and cloned individually into the pET32a expression vector as C-terminal His-tagged proteins. Both NdmA-His and NdmB-His proteins were purified using a Ni-NTA column. NdmA-His, in conjunction with Ccr, was capable of N-demethylating caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively, suggesting that NdmA-His is a specific N-1-demethylase. Similarly, NdmB-His was determined to be a specific N-3-demethylase, as it was capable of N-demethylating caffeine, theophylline, theobromine, and 3-methylxanthine to paraxanthine, 1-methylxanthine, 7-methylxanthine, and xanthine, respectively. N-demethylation activity of 7-methylxanthine to xanthine (putative NdmC) co-eluted with the partially purified Ccr fraction. This is the first report of multiple, highly positional-specific, Rieske, non-heme iron N-demethylase enzymes for bacterial metabolism of purine alkaloids.
|
4 |
Uncovering Novel Immuno-metabolic Profiles in Cutaneous Leishmaniasis:From Vaccine Development to Analgesic MechanismsVolpedo, Greta 09 September 2022 (has links)
No description available.
|
Page generated in 0.0741 seconds