Spelling suggestions: "subject:"calamagrostis"" "subject:"calarnagrostis""
11 |
Laboratorní spektroskopie pro vybrané druhy vegetace z krkonošské tundry / Laboratory spectroscopy for selected Krkonoše Mts. tundra vegetation speciesTomcová, Jana January 2019 (has links)
Laboratory spectroscopy for selected Krkonoše Mts. tundra vegetation species The diploma thesis is focused on testing the methodologies of measuring the reflectance of grasses from the tundra of Krkonoše Mountains (Nardus stricta, Molinia caerulea, Calamagrostis villosa). The spectoradiometer ASD FieldSpec 4 Wide-Res with added contact probe ASD Plant Probe is used for measurements. Since it is not common to measure such narrow leaves that do not cover the whole FOV, the thesis is looking for methodologies that are the most repeatable and influenced by a minimum of errors. Factors influencing the measurement results are also monitored. Furthermore, the differentiation of the studied species is observed based on their spectral properties. Based on the measured data the medians and standard deviations are calculated and compared among each other. An analysis of variance (ANOVA) is used to determine the bands where the influence of individual factors is more apparent and where the individual grasses are distinguishable. As the most suitable methodologies for measuring grasses depend on the grasses structures and properties, the best methodology is different for each of selected species. The two layer leaf measurement is most suitable for the Nardus stricta, the measurement of the abaxial sides of leaves fits...
|
12 |
Potentiel de terreaux de restauration à base de biochar, de cendre et de matières résiduelles fertilisantes pour la croissance d'Alnus incana ssp. rugosa et Calamagrostis canadensis : une stratégie de mise en végétation de rejets miniersGreffard, Laurence 08 August 2024 (has links)
Par l’accumulation de rejets miniers, l’exploitation minière altère les écosystèmes terrestres en place. La restauration des sites avec la mise en végétation permet de réinstaurer les services écosystémiques perdus. L’objectif principal de ce projet était de développer différents terreaux de restauration à partir de biochar, de cendre, de matières résiduelles fertilisantes (MRF) et de boue de chaulage pouvant être utilisés sur des rejets miniers et qui supporterait la croissance végétale tout en étant sans danger pour l’environnement et peu couteux. Les intrants ont été caractérisés au plan chimique, physique et biologique et des tests en serre ont été faits avec Alnus incana ssp. rugosa et Calamagrostis canadensis en présence des trois types de rejets d’une mine aurifère. La cendre a un impact important sur le pH et la teneur en Mn des terreaux, tandis que le biochar augmente plutôt la teneur en Fe. Au plan physique, la cendre a tendance à réduire la porosité et la conductivité hydraulique saturée par rapport au biochar. Le mélange de MRF fait toutefois les terreaux les plus poreux et perméables, mais contiennent des concentrations très élevées de P et K. La boue de chaulage fait augmenter la conductivité électrique, la teneur en Ca, Mg et Cu, mais n’influence pas autant les propriétés physiques des terreaux. Après 4 mois de croissance dans 8 terreaux, les aulnes rugueux ayant démontré la meilleure croissance sont ceux ayant poussé dans les terreaux 7 (biochar, MRF et boue de chaulage) et 8 (biochar et boue de chaulage), tandis que les résultats pour Calamagrostis canadensis, dont la germination a été peu élevée, n’ont pas permis de tirer de telles conclusions. Il semble donc que le biochar soit meilleure que la cendre pour la croissance de l’aulne rugueux, mais la boue de chaulage joue aussi un rôle important. / Mining operations produce a large amount of tailings, sludges and acid rocks, changing the environment. Revegetation of residues helps restor ecological services on mining sites. The main objective of this study was to develop low cost, environmentally sound substrates made of biochar, ash, fertilizing residual matter and lime sludge for revegetation of mining wastes. Physical, chemical and biological characterization of the substrates have been completed in addition to bioassays with Alnus incana subsp. rugosa and Calamagrostis canadensis. Ash in the substrates had an impact on pH and Mn content while Fe content was related to biochar. Porosity and saturated hydraulic conductivity were higher in the substrates with biochar in lower with ash. Fertilizing residual matter blend made the more porous and permeable substrates and very high content in P and K. Liming sludge increased electrical conductivity, Ca and Mg contents and did not significantly affect physical properties of substrates. After 4 months of growth in greenhouses, Alders showed the best growth in the substrates 7 (biochar, fertilizing residual matter and liming sludge) and 8 (biochar and liming sludge). Biochar seems better than ash for Alder growth, followed by liming sludge. We cannot conclude for Calamagrostis canadensis because of the lack of data due to its poor germination.
|
13 |
From reclamation to restoration: native grass species for revegetation in northeast British ColumbiaHuff, Valerie 04 January 2010 (has links)
Grasses are widely used in revegetation to control erosion, build soil and maintain habitat. In northeast British Columbia, non-native grass species are commonly seeded to reclaim industrially disturbed sites. Widespread concern about degradation of biodiversity and key ecological processes has led to increasing value placed on native species and management practices leading to a more resilient landscape.
I undertook this study to fill the restoration knowledge gap relating to native grasses in northeast BC. I did an extensive inventory of grasses on 217 sites in 2007, 2008 and 2009. Functional traits were measured in the field and in a greenhouse growth experiment. I found ninety-nine grass species occuring in the region, 70% of which are native. The number, proportion and extent of non-native grasses are increasing and four of these – Poa pratensis, Festuca rubra, Bromus inermis, and Phleum pratense represented almost a quarter of all occurrences. Several native species were common throughout the region: Calamagrostis canadensis, Leymus innovatus, Elymus trachycaulus, Poa palustris and Agrostis scabra. Other native species, including Festuca altaica, Koeleria macrantha, Pascopyrum smithii, and Schizachne purpurascens, strongly favoured intact habitats.
Elevation, soil moisture regime, proportion of bare ground, and land use were significant factors related to local grass species composition and abundance. Agrostis scabra, Alopecurus aequalis, Beckmannia syzigachne, Bromus ciliatus, Cinna latifolia, Deschampsia cespitosa, Elymus alaskanus, Elymus trachycaulus, Festuca saximontana and Hordeum jubatum grew commonly on severely damaged well sites.
Field measurements for Specific Leaf Area (SLA) and Leaf Dry Matter Content (LDMC) of 11 species showed an inverse correlation. Bromus ciliatus, Bromus pumpellianus, and Elymus trachycaulus had high SLA/low LDMC linked to rapid growth, whereas Festuca altaica, Deschampsia cespitosa, and Calamagrostis stricta had low SLA/high LDMC linked to slow growth and persistence.
In the greenhouse experiment, Poa palustris, Cinna latifolia and Bromus ciliatus produced the most overall biomass and Pascopyrum smithii and Poa palustris produced the greatest aboveground biomass. Calamagrostis stricta, Poa palustris, Elymus glaucus, Leymus innovatus and Pascopyrum smithii exhibited clonal growth. Beckmannia syzigachne, Bromus ciliatus Cinna latifolia produced viable seed during the 135-day experiment.
Considering all attributes five native species, Calamagrostis canadensis, Elymus trachycaulus, Poa palustris, Leymus innovatus, and Agrostis scabra are recommended for general restoration use in northeast B.C. Other native species show promise when matched to particular site conditions, including Alopecurus aequalis, Arctagrostis latifolia, Beckmannia syzigachne, Bromus ciliatus, Calamagrostis stricta, Cinna latifolia, Deschampsia cespitosa, Elymus glaucus, Festuca saximontana, Glyceria striata, Hordeum jubatum, Koeleria macrantha, Pascopyrum smithii, Poa alpina, Schizachne purpurascens and Trisetum spicatum.
This information will be valuable to land managers interested in moving beyond reclamation to ecological restoration of sites disturbed by oil and gas development. Developing practices that are environmentally sound and socially acceptable requires ongoing botanical inventory. Plant traits may be useful in matching species to site conditions and restoration goals. Policy recommendations include phasing in of requirements to use native seed while restricting the use of agronomic species, promoting natural colonization, and supporting a native seed industry.
|
14 |
Je aktivita ligninolytických enzymů při rozkladu opadu závislá na obsahu fenolických látek? / Does ligninolytic enzyme activity depend on phenolics content during the litter decomposition?APPLOVÁ, Markéta January 2010 (has links)
The aim of the study was to determine the influence of phenolics content and inoculation with soil extract on microbial respiration, on the phenoloxidase (PhOx), peroxidase (PerOx) and newly Mn-peroxidase (MnP) activity in two dominating litter samples (Calamagrostis villosa and Picea abies) differing in phenolics content from Plešné and Čertovo lake watersheds. At PhOx and PerOx activity, the dependence on incubation temperature with L-DOPA was estimated. PhOx and MnP activities significantly increased with higher content of hardly decomposable phenolics, but decreased with water extractable phenolics content. Inoculation with soil extract had no influence on microbial respiration, enzyme activity, nor on decomposition of phenolics. Microbial respiration was significantly higher at 10°C, but average enzyme activity was comparable at 0 and 10°C. PhOx activities had temperature optimum higher than 22°C, while PerOx activities had temperature optimum at 0 - 15°C.
|
15 |
Ermittlung von Struktur-Indikatoren zur Abschätzung des Einflusses forstlicher Bewirtschaftung auf die Biozönosen von Tiefland-Buchenwäldern / Identification of structure indicators for assessing the impact of forest management on the biocoenosis of lowland beech forestsWinter, Susanne 24 September 2005 (has links) (PDF)
Buchenwälder sind die großflächigste potenziell natürliche Vegetationsform Deutschlands und ein nach EU-FFH-Richtlinie besonders zu schützender Biotoptyp. Eine hohe Naturnähe ist auch in Wirtschaftswäldern (WiWald) notwendig, um die typischen Lebensgemeinschaften naturnaher Wälder langfristig zu erhalten, doch mangelt es an praktikablen/verifizierten Indikatoren, wie die nutzungsbedingte Abweichung vom Naturzustand ermittelt werden kann. In >100 Jahre alten und ~40 ha großen Tiefland-Buchenwäldern (Mecklenburg-Vorpommern/Brandenburg) wurde anhand von 13 WiWäldern, vier seit <20 Jahren (k20) und drei seit >50 Jahren (r50) unbewirtschafteten Beständen den folgenden Fragen nachgegangen: Wie groß sind die strukturellen, vegetationskundlichen und carabidologischen Unterschiede zwischen bewirtschafteten, kurz- und langfristig unbewirtschafteten Buchenwäldern? Gibt es strukturelle Indikatoren und quantitative Größen zur Abschätzung des Einflusses forstlicher Bewirtschaftung auf die Biozönosen von Tiefland-Buchenwäldern? In Probekreisen (Pk) von 500 m² an Rasterpunkten (100 m x 100 m) wurden strukturelle und in Pk von 314 m² vegetationskundliche Daten erhoben. In fünf Pk/Bestand wurde jeweils eine Barberfalle über die Vegetationsperiode installiert. Ganzflächig wurden die Verteilung der Waldentwicklungsphasen (WEP)und zusätzlich zu den Pk-Aufnahmen hektarweise Sonderstrukturen aufgenommen. U. a. wurden folgende Sonderstrukturen aufgenommen: Zunderschwamm, Kronen- und Zwieselbrüche, Ersatzkronen, Blitzrinnen, Risse/Spalten, Höhlen, Mulmkörper/-taschen. Diese naturschutzfachlich wichtigen Sonderstrukturen wurden aus den Habitatansprüchen der typischen Buchenwaldfauna abgeleitet.Es konnten große Unterschiede zwischen WiWald und r50-Flächen (v. a. >100 Jahre unbewirtschafteten Flächen) aufgezeigt werden. Die k20-Flächen unterscheiden sich nicht wesentlich vom WiWald. Die Anzahl verschiedener WEP/ha und WEP-Patches/ha liegt in den r50-Flächen signifikant höher als im WiWald. Der Holzvorrat der r50-Flächen liegt mit ~600 m³/ha (Terminal- ~800 m³/ha, Zerfallsphase 450 m³/ha) deutlich höher als im WiWald. Charakteristisch für die r50-Flächen ist das Vorkommen von in ihrer Vitalität eingeschränkten Bäume ab 80 cm BHD und ein inhomogeneres Lichtmosaik im Bestand. Die Stammqualitäten (u. a. Astigkeit) in r50-Flächen unterscheiden sich kaum von denen in WiWald. In den r50-Flächen kommt bedeutend mehr Totholz (>142 m³/ha) als im WiWald (max. 34 m³/ha) vor. Im WiWald können Stubben dominieren. Verschiedene Totholzqualitäten sind im WiWald nur unvollständig vorhanden. Etwa 40 % des Totholzes besitzt keine Totholznachbarn (r50-Flächen: <2 %) und die Lichtverhältnisse am Totholz sind nicht so vielfältig (wenig sonnenexponiert und wenig gering besonnt). In den >100 Jahre unbewirtschafteten Flächen kommen ~12 Sonderstrukturtypen mit >200 Sonderstrukturen/ha vor. 19 von 20 Sonderstrukturen sind im WiWald signifikant seltener und 11 Sonderstrukturen sind als Naturnähe-Indikatoren geeignet.Vegetation: In der Krautschicht sind höhere Deckungsgrade, mehr (lichtanzeigende) Arten, weniger Waldarten und eine höhere Diversität zu verzeichnen. Im WiWald wird u. a. das Vorkommen von Calamagrostis epigeios, Impatiens parviflora und Rubus idaeus gefördert. Stark gefährdete Moosarten sind im WiWald seltener als in den Referenzwäldern, da sie vor allem auf liegendem Totholz und auf den Stammanläufen vorkommen. Carabiden: Im WiWald gibt es weniger Individuen und Biomasse von mesophilen Waldarten und eine geringere Anzahl von flugunfähigen Individuen. Als Indikatoren für naturnahe Tiefland-Buchenwälder können die drei Arten Carabus glabratus, C. hortensis und Cychrus caraboides bezeichnet werden. Indikatoren: Es wurden Zielgrößen für 29 Struktur-Indikatoren für naturnahe Wälder vorgeschlagen. Für WiWälder wurden gesonderte Zielgrößen festgelegt, die die nutzungsbedingte, nicht zu vermeidende Abweichung vom Naturzustand berücksichtigen. / Beech forests are the most important natural vegetation type of Germany,and they are included in annex II of the EU-FFH-Directive,which requests nature conservation for the listed habitat types.High naturalness is necessary in managed forests (w-sites) to maintain the typical biocoenosis of forests near nature. But there is a lack of practicable/verified indicators to determine the degree of alteration managed forests have compared to natural forests. In >100 year old and ~40 ha big lowland beech forests in Mecklenburg-Vorpommern and Brandenburg, 13 w-sites, 4 study sites which are unmanaged since <20 years (k-sites) and 3 sites which are unmanaged since >50 years (r50-sites) were investigated to answer these questions: What the differences are between w-, k- and r-sites according to forest structure, vegetation and carabids? Are there valid structural indicators with thresholds to assess the impact of forestry use on the biocoenosis of lowland beech forests? At grid points(distance 100 mx 100 m),on circular sample plots (SP) of 500 m² the structural data and on SP of 314 m² the vegetation was investigated. At five SP/study site a pitfall trap was installed during the entire vegetation period. On the whole study site the distribution of forest development phases (FDP) was mapped, and on full one ha plots the special structures were investigated. The following special structures were mapped e.g. Fomes fomentarius trees, crown and crotch breakage, substitute crowns, lightning shakes,gutters/rifts, cavities, mould and bark bag. These special structures have been derived from the habitat needs of the typical beech forest fauna.The results revealed tremendous differences between w- and r50-sites. The k-sites show no clear differences to the managed sites.In the r50-sites, the number of different FDP/ha and FDP units/ ha is significant higher than in w-sites. The timber stock of the r50-sites is ~600 m³/ha (terminal phase ~800 m³/ha, decay phase ~450³/ha). A characteristic feature of the r50-sites is the occurrence of trees with 80 cm bhd or more with reduced vitality. The timber trunk) qualities of r-sites differ only slightly from managed stands. In the r50-sites the dead wood volume (>142 m³/ha) is much higher than in the w-sites (max. 34 m³/ha). Many different features of dead wood occur only fragmentary within w-sites. About 40 % of the dead wood objects have no "dead wood neighbour" (r50-sites: <2 %), and the light distribution is much less diverse. In >100 years unmanaged r-sites ~12 different types of special structures and 200 single special structures occur per ha. 19 out of 20 special structures are significantly less frequent in w-sites; 11 special structures are specifically valuable to be used as naturalness indicators.Vegetation: In the herb layer occur higher coverage values, more (light-indicating) species, but only few species indicating ancient forests and a higher diversity index value. In w-sites, the occurrence of e. g. Calamagrostis epigeios, Impatiens parviflora and Rubus idaeus is supported. reduced. Threatened moss species are rare in w-sites compared to r-sites, since they mainly grow on laying dead wood, which is rare in forests in use, and on inclined/rough-barked stem bases. Ground beetles: The forestry use of lowland beech forests leads to less individuals and lower biomass of so-called mesophilous forest species. Furthermore, the number of flightless individuals is lower. As proper indicators for near-natural lowland beech forests, the three species Carabus glabratus, C. hortensis und Cychrus caraboides could be identified. Indicators: 29 structural indicators were identified and thresholds were given. But even in lowland beech forests managed in a conservation-friendly way, these target values for near-natural and natural forests are unlikely to be reached. Therefore, for w-sites special threshold values have been defined, which consider the inevitable difference between managed and natural forests.
|
16 |
Ermittlung von Struktur-Indikatoren zur Abschätzung des Einflusses forstlicher Bewirtschaftung auf die Biozönosen von Tiefland-BuchenwäldernWinter, Susanne 01 September 2005 (has links)
Buchenwälder sind die großflächigste potenziell natürliche Vegetationsform Deutschlands und ein nach EU-FFH-Richtlinie besonders zu schützender Biotoptyp. Eine hohe Naturnähe ist auch in Wirtschaftswäldern (WiWald) notwendig, um die typischen Lebensgemeinschaften naturnaher Wälder langfristig zu erhalten, doch mangelt es an praktikablen/verifizierten Indikatoren, wie die nutzungsbedingte Abweichung vom Naturzustand ermittelt werden kann. In >100 Jahre alten und ~40 ha großen Tiefland-Buchenwäldern (Mecklenburg-Vorpommern/Brandenburg) wurde anhand von 13 WiWäldern, vier seit <20 Jahren (k20) und drei seit >50 Jahren (r50) unbewirtschafteten Beständen den folgenden Fragen nachgegangen: Wie groß sind die strukturellen, vegetationskundlichen und carabidologischen Unterschiede zwischen bewirtschafteten, kurz- und langfristig unbewirtschafteten Buchenwäldern? Gibt es strukturelle Indikatoren und quantitative Größen zur Abschätzung des Einflusses forstlicher Bewirtschaftung auf die Biozönosen von Tiefland-Buchenwäldern? In Probekreisen (Pk) von 500 m² an Rasterpunkten (100 m x 100 m) wurden strukturelle und in Pk von 314 m² vegetationskundliche Daten erhoben. In fünf Pk/Bestand wurde jeweils eine Barberfalle über die Vegetationsperiode installiert. Ganzflächig wurden die Verteilung der Waldentwicklungsphasen (WEP)und zusätzlich zu den Pk-Aufnahmen hektarweise Sonderstrukturen aufgenommen. U. a. wurden folgende Sonderstrukturen aufgenommen: Zunderschwamm, Kronen- und Zwieselbrüche, Ersatzkronen, Blitzrinnen, Risse/Spalten, Höhlen, Mulmkörper/-taschen. Diese naturschutzfachlich wichtigen Sonderstrukturen wurden aus den Habitatansprüchen der typischen Buchenwaldfauna abgeleitet.Es konnten große Unterschiede zwischen WiWald und r50-Flächen (v. a. >100 Jahre unbewirtschafteten Flächen) aufgezeigt werden. Die k20-Flächen unterscheiden sich nicht wesentlich vom WiWald. Die Anzahl verschiedener WEP/ha und WEP-Patches/ha liegt in den r50-Flächen signifikant höher als im WiWald. Der Holzvorrat der r50-Flächen liegt mit ~600 m³/ha (Terminal- ~800 m³/ha, Zerfallsphase 450 m³/ha) deutlich höher als im WiWald. Charakteristisch für die r50-Flächen ist das Vorkommen von in ihrer Vitalität eingeschränkten Bäume ab 80 cm BHD und ein inhomogeneres Lichtmosaik im Bestand. Die Stammqualitäten (u. a. Astigkeit) in r50-Flächen unterscheiden sich kaum von denen in WiWald. In den r50-Flächen kommt bedeutend mehr Totholz (>142 m³/ha) als im WiWald (max. 34 m³/ha) vor. Im WiWald können Stubben dominieren. Verschiedene Totholzqualitäten sind im WiWald nur unvollständig vorhanden. Etwa 40 % des Totholzes besitzt keine Totholznachbarn (r50-Flächen: <2 %) und die Lichtverhältnisse am Totholz sind nicht so vielfältig (wenig sonnenexponiert und wenig gering besonnt). In den >100 Jahre unbewirtschafteten Flächen kommen ~12 Sonderstrukturtypen mit >200 Sonderstrukturen/ha vor. 19 von 20 Sonderstrukturen sind im WiWald signifikant seltener und 11 Sonderstrukturen sind als Naturnähe-Indikatoren geeignet.Vegetation: In der Krautschicht sind höhere Deckungsgrade, mehr (lichtanzeigende) Arten, weniger Waldarten und eine höhere Diversität zu verzeichnen. Im WiWald wird u. a. das Vorkommen von Calamagrostis epigeios, Impatiens parviflora und Rubus idaeus gefördert. Stark gefährdete Moosarten sind im WiWald seltener als in den Referenzwäldern, da sie vor allem auf liegendem Totholz und auf den Stammanläufen vorkommen. Carabiden: Im WiWald gibt es weniger Individuen und Biomasse von mesophilen Waldarten und eine geringere Anzahl von flugunfähigen Individuen. Als Indikatoren für naturnahe Tiefland-Buchenwälder können die drei Arten Carabus glabratus, C. hortensis und Cychrus caraboides bezeichnet werden. Indikatoren: Es wurden Zielgrößen für 29 Struktur-Indikatoren für naturnahe Wälder vorgeschlagen. Für WiWälder wurden gesonderte Zielgrößen festgelegt, die die nutzungsbedingte, nicht zu vermeidende Abweichung vom Naturzustand berücksichtigen. / Beech forests are the most important natural vegetation type of Germany,and they are included in annex II of the EU-FFH-Directive,which requests nature conservation for the listed habitat types.High naturalness is necessary in managed forests (w-sites) to maintain the typical biocoenosis of forests near nature. But there is a lack of practicable/verified indicators to determine the degree of alteration managed forests have compared to natural forests. In >100 year old and ~40 ha big lowland beech forests in Mecklenburg-Vorpommern and Brandenburg, 13 w-sites, 4 study sites which are unmanaged since <20 years (k-sites) and 3 sites which are unmanaged since >50 years (r50-sites) were investigated to answer these questions: What the differences are between w-, k- and r-sites according to forest structure, vegetation and carabids? Are there valid structural indicators with thresholds to assess the impact of forestry use on the biocoenosis of lowland beech forests? At grid points(distance 100 mx 100 m),on circular sample plots (SP) of 500 m² the structural data and on SP of 314 m² the vegetation was investigated. At five SP/study site a pitfall trap was installed during the entire vegetation period. On the whole study site the distribution of forest development phases (FDP) was mapped, and on full one ha plots the special structures were investigated. The following special structures were mapped e.g. Fomes fomentarius trees, crown and crotch breakage, substitute crowns, lightning shakes,gutters/rifts, cavities, mould and bark bag. These special structures have been derived from the habitat needs of the typical beech forest fauna.The results revealed tremendous differences between w- and r50-sites. The k-sites show no clear differences to the managed sites.In the r50-sites, the number of different FDP/ha and FDP units/ ha is significant higher than in w-sites. The timber stock of the r50-sites is ~600 m³/ha (terminal phase ~800 m³/ha, decay phase ~450³/ha). A characteristic feature of the r50-sites is the occurrence of trees with 80 cm bhd or more with reduced vitality. The timber trunk) qualities of r-sites differ only slightly from managed stands. In the r50-sites the dead wood volume (>142 m³/ha) is much higher than in the w-sites (max. 34 m³/ha). Many different features of dead wood occur only fragmentary within w-sites. About 40 % of the dead wood objects have no "dead wood neighbour" (r50-sites: <2 %), and the light distribution is much less diverse. In >100 years unmanaged r-sites ~12 different types of special structures and 200 single special structures occur per ha. 19 out of 20 special structures are significantly less frequent in w-sites; 11 special structures are specifically valuable to be used as naturalness indicators.Vegetation: In the herb layer occur higher coverage values, more (light-indicating) species, but only few species indicating ancient forests and a higher diversity index value. In w-sites, the occurrence of e. g. Calamagrostis epigeios, Impatiens parviflora and Rubus idaeus is supported. reduced. Threatened moss species are rare in w-sites compared to r-sites, since they mainly grow on laying dead wood, which is rare in forests in use, and on inclined/rough-barked stem bases. Ground beetles: The forestry use of lowland beech forests leads to less individuals and lower biomass of so-called mesophilous forest species. Furthermore, the number of flightless individuals is lower. As proper indicators for near-natural lowland beech forests, the three species Carabus glabratus, C. hortensis und Cychrus caraboides could be identified. Indicators: 29 structural indicators were identified and thresholds were given. But even in lowland beech forests managed in a conservation-friendly way, these target values for near-natural and natural forests are unlikely to be reached. Therefore, for w-sites special threshold values have been defined, which consider the inevitable difference between managed and natural forests.
|
Page generated in 0.0374 seconds