• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 23
  • 15
  • 13
  • 9
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 211
  • 211
  • 35
  • 31
  • 31
  • 31
  • 28
  • 28
  • 27
  • 26
  • 26
  • 20
  • 19
  • 19
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Study of Short Forms of P/Q-Type Voltage-Gated Calcium Channels

Feng, Qiao January 2017 (has links)
P/Q-type voltage-gated calcium channels (CaV2.1) are expressed in both central and peripheral nervous systems, where they play a critical role in neurotransmitter release. Mutations in the pore-forming α1 subunit of CaV2.1 can cause neurological disorders such as episodic ataxia type 2, familial hemiplegic migraine type 1 and spinocerebellar ataxia type 6. Interestingly, a 190-kDa fragment of CaV2.1 was found in mouse brain tissue and cultured mouse cortical neurons, but not in heterologous systems expressing full-length CaV2.1. In the brain, the 190-kDa species is the predominant form of CaV2.1, while in cultured cortical neurons the amount of the 190-kDa species is comparable to that of the full-length channel. The 190-kDa fragment contains part of the II-III loop, repeat III, repeat IV and the C-terminal tail. A putative complementary fragment of 80-90 kDa was found along with the 190-kDa form. Moreover, preliminary data show that the abundance of the 190-kDa species and the 80-90-kDa species relative to the full-length channel is upregulated by increased intracellular Ca²⁺ concentration. Truncation mutations in the P/Q-type calcium channel have been found to cause the neurological disease episodic ataxia type 2. Some of the disease-causing truncations resemble the 190-kDa truncated channel that we found. Three pairs of truncated versions of CaV2.1 were engineered to resemble putative products of proteolytic cleavage in the three intracellular loops. Electrophysiological properties of these truncated channels were studied. The truncated channel corresponding to the N-terminal fragment produced by cleavage in the II-III loop has a suppressive effect on full-length P/Q channel currents, resembling the effects of several truncation mutants that cause episodic ataxia type 2. The complementary pair of truncated channels created by a truncation site in the I-II loop forms a functional channel when coexpressed. These results shed light on the functional effects of proteolytic cleavage in the intracellular loops of the P/Q channel.
52

Control of intracellular calcium level in vascular endothelial cells: role of cGMP and TRP channel.

January 2001 (has links)
Lau Kin Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 97-103). / Abstracts in English and Chinese. / Contents --- p.1 / Chapter Chapter 1 --- Introduction --- p.5 / Chapter 1.1 --- Calcium Signaling in Endothelial Cells --- p.5 / Chapter 1.1.1 --- Calcium and its functions --- p.5 / Chapter 1.1.2 --- "Second Messengers: Inositol-1,4,5-Triphosphate and Diacylglycerol" --- p.6 / Chapter 1.1.3 --- Propagation of Ca2+ Signals --- p.8 / Chapter 1.1.4 --- Ca2+-ATPases --- p.9 / Chapter 1.1.5 --- Regulation of Sarcoplasmic Reticulum --- p.10 / Chapter 1.1.6 --- Agonist-induced Ca2+ Entry --- p.11 / Chapter 1.2 --- Mechanism of Store-Operated Ca2+ Entry --- p.14 / Chapter 1.2.1 --- Signaling Mechanisms of SOC --- p.14 / Chapter 1.2.1.1 --- A Diffusible Messenger --- p.14 / Chapter 1.2.1.2 --- Conformational Coupling --- p.15 / Chapter 1.2.1.3 --- Vesicle Secretion --- p.16 / Chapter 1.3 --- Regulation of Ca2+ Entry by cGMP --- p.20 / Chapter 1.4 --- Molecular Structres of Store-operated Channels --- p.22 / Chapter 1.4.1 --- Drosophila Transient Receptor Potential (trp) Gene --- p.22 / Chapter 1.4.2 --- Trpl Gene --- p.23 / Chapter Chapter 2 --- Methods and Materials --- p.27 / Chapter 2.1 --- Materials --- p.27 / Chapter 2.1.1 --- Phosphate-buffered saline --- p.27 / Chapter 2.1.2 --- Culture Media and Materials --- p.27 / Chapter 2.2 --- Preparations and Culture of Cells --- p.28 / Chapter 2.2.1 --- Culture of Rat Aortic Endothelial Cells --- p.28 / Chapter 2.2.2 --- Culture of Human Bladder Epithelial Cell Line --- p.29 / Chapter 2.2.3 --- Culture of Human Embryonic Kidney Epithelial Cell Line --- p.29 / Chapter 2.3 --- Cell. Subculture and Marvest --- p.29 / Chapter 2.4 --- Intracellular Free Calcium Ions ([Ca2+]i) measurment --- p.30 / Chapter 2.4.1 --- Chemicals --- p.30 / Chapter 2.4.2 --- Bathing solutions --- p.31 / Chapter 2.4.3 --- Preparations of Cells for [Ca2+]i Measurement --- p.31 / Chapter 2.4.3.1 --- Plating cells on Glass Cover Slips for [Ca2+]i Measurement with PTI RatioMaster Fluorescence System --- p.31 / Chapter 2.4.3.2 --- Plating cells on Glass Cover Slips for [Ca2+]i Measurement with Confocal Imaging System and Confocal Laser Scanning Microscopy --- p.32 / Chapter 2.4.4 --- PTI RatioMaster Fluorescence System --- p.35 / Chapter 2.4.4.1 --- Experimental Setup --- p.35 / Chapter 2.4.4.2 --- Fura-2/AM Dye loading --- p.35 / Chapter 2.4.4.3 --- Background Fluorescence and [Ca ]i Measurement --- p.37 / Chapter 2.4.5 --- Confocal Imaging System --- p.37 / Chapter 2.4.5.1 --- Experimental Setup --- p.37 / Chapter 2.4.5.2 --- Fluo-3/AM Dye Loading --- p.39 / Chapter 2.4.5.3 --- [Ca2+]i Measurement --- p.39 / Chapter 2.4.6 --- Confocal Laser Scanning Microscopy --- p.40 / Chapter 2.4.6.1 --- Principles --- p.40 / Chapter 2.5 --- Cloning and expression of Trpl in HEK293 cell line --- p.43 / Chapter 2.5.1 --- Cloning of Htrpl Gene into pcDNA3 Vector --- p.43 / Chapter 2.5.1.1 --- Enzyme Digestion --- p.43 / Chapter 2.5.1.2 --- Gel electrophoresis and Isolation of Htrpl by GeneCIean II Kit --- p.44 / Chapter 2.5.1.3 --- Ligation of Trpl and pcDNA3 Vector --- p.44 / Chapter 2.5.1.4 --- Transformation --- p.47 / Chapter 2.5.1.5 --- Purification of cloned Trpl-pcDNA3 by QIAprep Spin Miniprep Kit --- p.47 / Chapter 2.5.2 --- Transfection of HEK293 Cells with Htrpl and pEGFP-Nl Vector --- p.48 / Chapter 2.5.2.1 --- Cell Preparation for Transfection --- p.48 / Chapter 2.5.2.2 --- Transfection --- p.48 / Chapter 2.5.3 --- Fluorescence Labeling of Expressed Htrpl Channel in HEK293 Cells --- p.49 / Chapter 2.5.3.1 --- Immunostaining with Anti-TRPCl Antibody --- p.49 / Chapter 2.5.3.2 --- Labeling with FITC2° Antibody --- p.50 / Chapter Chapter 3 --- Results --- p.51 / Chapter 3.1 --- Propagation of Ca2+ Signaling --- p.51 / Chapter 3.2. --- Effect of cGMP on SERCA --- p.55 / Chapter 3.2.1 --- ATP stimulated Ca2+ release from internal stores --- p.55 / Chapter 3.2.2 --- Effect of cGMP on the falling phase of [Ca2+]i --- p.55 / Chapter 3.2.3 --- Effect of CPA on the falling phase of [Ca2+]i --- p.58 / Chapter 3.2.4 --- Effect of KT5823 on cGMP --- p.63 / Chapter 3.3. --- Effect of cGMP on bradykinin-activated capacitative Ca2+ entry --- p.65 / Chapter 3.3.1 --- Bradykinin induced capacitative Ca2+ entry --- p.65 / Chapter 3.3.2 --- Effect of cGMP on Ca2+ entry activated by bradykinin --- p.67 / Chapter 3.3.3 --- Effect of KT5823 on the inhibitory effect of cGMP on Ca2+ entry activated by bradykinin --- p.67 / Chapter 3.3.4. --- Effect of cGMP and KT5823 on capacitative Ca2+ entry activated by a combination of different agonists. --- p.71 / Chapter 3.4 --- Cloning and expression of htrpl in HEK 293 cell line --- p.75 / Chapter 3.4.1 --- Optimizing transfection conditions using pEGFP-Nl --- p.78 / Chapter 3.4.2 --- Transient transfection of htrpl channel in HEK293 cells --- p.81 / Chapter 3.4.3 --- Channel properties of expressed htrpl channel --- p.84 / Chapter Chapter 4 --- Discussion --- p.88 / Chapter 4.1 --- Ptopagation of Ca2+ Signaling --- p.88 / Chapter 4.2 --- Effect of cGMP on[Ca2+]i of Vascular Endothelial Cells --- p.89 / Chapter 4.2.1 --- Effect of cGMP on SERCA --- p.89 / Chapter 4.2.2 --- Effect of cGMP on Regulation of Agonist-Activated Capacitative Ca2+ Entry --- p.92 / Chapter 4.2.3 --- Physiological Property of Expressed Htrpl in HEK293 cells --- p.95 / References --- p.97
53

Effects of the Cardioprotective Drugs Dexrazoxane and ADR-925 on Doxorubicin Induced Ca2+ Release from the Sarcoplasmic Reticulum

Herzinger, Thomas Andreas 08 November 1996 (has links)
The sarcoplasmic reticulum is the intramuscular organelle responsible for the regulation of cytoplasmic calcium levels in muscle. This thesis investigates the effects of the cardioprotective drug, dexrazoxane, and its metabolite ADR-925 on doxorubicin induced calcium release from skeletal sarcoplasmic reticulum. Doxorubicin is a widely used antineoplastic agent. One of the major side effects of doxorubicin usage is chronic cardiotoxicity. Doxorubicin is a potent activator of the calcium release mechanism from the SR. The interaction between doxorubicin and the calcium release channel has been proposed as the possible underlying mechanism behind cardiotoxicity. A short overview of different hypotheses describing doxorubicin induced cardiotoxicity and proposed mechanisms of cardioprotection by dexrazoxane are presented. While dexrazoxane did not appear to affect the calcium permeability of the SR, its metabolite, ADR-925, modulates the ryanodine receptor complex. ADR-925 inhibits high affinity ryanodine binding to the ryanodine receptor/calcium release channel complex by decreasing the sensitivity of the receptor for stimulation by calcium. ADR-925's ability to inhibit doxorubicin stimulated ryanodine binding is independent of the doxorubicin concentration. These results demonstrate that ADR-925 directly affects the ryanodine receptor complex of the SR by desensitizing the receptor to activation by calcium. Furthermore, ADR-925 reduces the inhibitory effect of hydrogen peroxide on the ryanodine receptor/ calcium release channel. This suggests that ADR-925 may protect the SR from oxidative effects of free radicals. It has been somewhat controversial whether doxorubicin induced cardiotoxicity is due to a specific interaction with the calcium release mechanism of SR. The findings presented in this thesis which demonstrate that the cardioprotectant ADR-925 interacts directly with the ryanodine receptor from SR, further support the hypothesis that the ryanodine receptor is a primary target of doxorubicin's action.
54

Effects of gender and sex hormone status on intracellular calcium and contractility in the rat heart

Curl, Claire Louise,1976- January 2001 (has links)
Abstract not available
55

The role of calcium-dependent pathways in vestibular compensation

Sansom, Andrew J., n/a January 2005 (has links)
Damage to one vestibular apparatus (unilateral vestibular deafferentation, UVD) results in severe postural and ocular motor disturbances (such as spontaneous nystagmus, SN) that recover over time in a process known as vestibular compensation. However, the underlying neurochemical mechanisms of vestibular compensation are poorly understood. While UVD affects many areas in the CNS, attention has focused upon the partially deafferented second order neurons in the vestibular nuclei complex (VNC). Several converging lines of evidence suggest that Ca�⁺-permeable ion channels (N-methyl-D-aspartate receptors and L-type voltage-gated Ca�⁺-channels) and intracellular Ca�⁺-dependent protein kinases play an important role in vestibular compensation. However, the nature of this involvement and the locus of these changes are unknown. The aim of this thesis was to investigate the role of Ca�⁺ signalling pathways in the VNC during vestibular compensation in guinea pig. These issues were investigated in three separate experiments that utilised two methodological approaches: i) in vitro assays were used to determine the nature and extent of protein phosphorylation within the VNC at various stages of compensation; and ii) ion channel blockers or cell-permeable kinase inhibitors were injected directly into the VNC immediately before UVD to determine whether or not these systems were causally involved in compensation. The results of experiment 1 (Chapter 5) showed that a bolus intra-VNC injection of an uncompetitive NMDA receptor antagonist, but not an L-type voltage-gated Ca�⁺ channel antagonist, temporarily reduced SN frequency at the earliest measurement time (6 hours post-UVD). These results suggested that the initial expression of SN required, in part, the activation of NMDA receptors in the VNC on the side of the UVD, and by inference, Ca�⁺ entry through the ion channel. The results of experiment 2 (Chapter 6) revealed that the medial VNC contains abundant Ca�⁺/calmodulin-dependent and Ca�⁺/phospholipid-dependent protein kinase activities. The same VNC tissue removed from animals at various times after UVD, showed that vestibular compensation is accompanied by specific changes in the phosphorylation of several major protein kinase C substrates. These included an unidentified 46-kDa band, and a 75-kDa band with similar characteristics to the myristoylated alanine-rich C kinase substrate (MARCKS). These results suggest that protein kinase C signalling pathways may be involved in vestibular compensation. The results of experiment 3 (Chapter 7) are consistent with these results showing that intra-VNC infusion of a protein kinase C inhibitor, but not a Ca�⁺/calmodulin-dependent protein kinase II inhibitor, significantly increased SN at the earliest measurement times (6 and 8 hours), but had no effect upon the time taken to achieve compensation or on postural compensation. These results suggest that the induction of SN compensation involves protein kinase C activity in the VNC. Taken together, these findings suggest that the mechanisms underlying the expression of SN (e.g., Ca�⁺ influx via NMDA receptors) are possibly distinct from those that initiate its compensation (e.g., PKC activation). The downstream effects of raised intracellular Ca�⁺ may involve protein kinase C-dependent phosphorylation of key intracellular proteins that initiate long-lasting changes in cellular function within the VNC.
56

Role of Ca2+ -permeable cation channels in Ca2+ Signalling and necrotic cell death

Wisnoskey, Brian J. January 2004 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2004. / [School of Medicine] Department of Physiology and Biophysics. Includes bibliographical references. Available online via OhioLINK's ETD Center.
57

Regulation of SNARE protein interaction with Cav2.2 channels by protein phosphorylation /

Yokoyama, Charles Takeshi, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 117-136).
58

An exploration of the calcium signaling during somitogenesis in zebrafish (Danio rerio) /

Leung, Fung Ping. January 2003 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 187-198). Also available in electronic version. Access restricted to campus users.
59

Mechanisms of endogenous nitric oxide production and intracellular pathways in rat hippocampal CA1 calcium response to hypoxia and in-vitro ischemia

Tjong, Yung-wui., 鍾勇會. January 2004 (has links)
published_or_final_version / abstract / toc / Physiology / Master / Master of Philosophy
60

Dichotomic role of two pore channel 2 (TPC2) in neural differentiationof mouse embryonic stem (ES) cells

Zhang, Zhehao., 张哲豪. January 2011 (has links)
published_or_final_version / Physiology / Master / Master of Philosophy

Page generated in 0.0744 seconds