Spelling suggestions: "subject:"calcium -- physiology"" "subject:"alcium -- physiology""
1 |
Regulation of nuclear calcium in HELA and C6 glioma cells. / CUHK electronic theses & dissertations collectionJanuary 1998 (has links)
by Lui Po Yee Pauline. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (p. 211-222). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
|
2 |
Differential effects of calcium and tetanic stimulation frequencies on hippocampal synaptic potentiation and depressionChirwa, Sanika Samuel January 1985 (has links)
In the hippocampus, tetanic stimulation of an input results in a long lasting potentiation (LLP) of synaptic transmission involving that input. While high frequency tetanic stimulations are preferred to elicit LLP, low frequency tetanus induces homosynaptic and heterosynaptic depressions. The present investigations were conducted to (1) analyse the characteristics of pulses in orthodromic and antidromic tetanic stimulations and relate them to post-tetanic changes in evoked potentials (2) determine if potentiation and depression co-occur and (3) determine whether an established LLP in one input is subsequently modified by the initiation of LLP in another input (to the same CAlb neurons) or whether LLP can be reversed by homosynaptic and heterosynaptic depressions and lastly (4) determine how interference or enhancements of calcium and potassium fluxes with pharmacological substances related to potentiation and depression.
Experiments were conducted on transversely sectioned rat hippocampal slices. Evoked potentials in subfield CAlb were elicited with stimulations of CAlb axons, commissural (Com), or Schaffer collaterals (Sch). Sch terminal
excitability was tested with a stimulating electrode placed in the Sch/CAlb synaptic regions. Recordings were made with microelectrodes positioned
in the CAlb cell bodies and/or dendritic regions, and in field CA3.
It was found that potentiation and depressions co-occur. Presynaptic volleys accompanied all tested tetanic trains. Similarly, antidromic trains discharged CAlb neurons continuously but did not cause LLP. Low frequency tetanic trains caused facilitated synchronous discharges of CAlb neurons during significant portions of these trains. In contrast, few if any syn- chronous discharges followed high frequency tetanus. Yet high frequency tetanus elicited LLP and low frequency tetanus caused homo- and heterosynaptic
depressions. An established LLP could be masked but not reversed by homo- and heterosynaptic depressions but this LLP was not interrupted by subsequently induced LLP of a separate input. Iontophoretic L-glutamate on CAlb cell bodies caused depression which was more pronounced if a tetanus was evoked during L-glutamate ejections. The depressions to low frequency tetanus and L-glutamate were counteracted by verapamil. Lastly, barium and 4-aminopyridine potentiations were reversed with washing. Applications of these drugs did not alter Sch terminal excitability. Tetanus induced during the presence of 4-aminopyridine still elicited LLP.
It is concluded that homo- and heterosynaptic depressions are partly due to the accumulation of calcium into the CAlb neurons. The magnitude of calcium
entry into presynaptic and postsynaptic regions is governed by the tetanic
frequencies evoked. The results are consistent with a presynaptic mediated LLP. / Medicine, Faculty of / Anesthesiology, Pharmacology and Therapeutics, Department of / Graduate
|
3 |
Excitation contraction coupling of ventricular myocyte in septicshock: role of a change in calcium cyclingsystemLau, Chun-hung, Barry., 劉俊雄. January 2007 (has links)
published_or_final_version / abstract / Physiology / Master / Master of Philosophy
|
4 |
The simultaneous measurement of nucleotide-stimulated cytosolic calcium signaling and anion secretion in cultured equine sweat gland epithelium.January 2000 (has links)
Wong Hau Yan Connie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 86-95). / Abstracts in English and Chinese. / Abstract --- p.ii / Acknowledgements --- p.ix / Contents --- p.x / List of Figures --- p.xiii / List of Tables --- p.xv / Abbreviations --- p.xvi / Chapter Chapter 1: --- Introduction / Chapter 1.1 --- Role of extracellular nucleotides in equine sweat gland epithelial cells --- p.1 / Chapter 1.2 --- Subdivision of P1 and P2 purinoceptor --- p.4 / Chapter 1.3 --- General properties of P2 purinoceptor --- p.5 / Chapter 1.3.1 --- P2X purinoceptor family --- p.5 / Chapter 1.3.2 --- P2Y purinoceptor family --- p.8 / Chapter 1.4 --- The diversity of P2Y purinoceptor --- p.10 / Chapter 1.4.1 --- P2Y1 receptor --- p.10 / Chapter 1.4.2 --- P2Y2 receptor --- p.10 / Chapter 1.4.3 --- P2Y4 receptor --- p.10 / Chapter 1.4.4 --- P2Y6 receptor --- p.10 / Chapter 1.4.5 --- P2Y11 receptor --- p.11 / Chapter 1.5 --- The importance of calcium --- p.13 / Chapter 1.6 --- General aspects of calcium signaling --- p.14 / Chapter 1.7 --- Calcium release from the intracellular calcium stores --- p.15 / Chapter 1.7.1 --- Metabolism of inositol phosphates --- p.15 / Chapter 1.7.2 --- Ca2+ release from the internal calcium store --- p.15 / Chapter 1.8 --- Store-operated calcium channels (SOCC) or Capacitative calcium entry (CCE) --- p.18 / Chapter 1.8.1 --- The nature of the signal for CCE --- p.18 / Chapter 1.8.1.1 --- Conformational coupling --- p.18 / Chapter 1.8.1.2 --- Diffusible messenger --- p.21 / Chapter 1.9 --- Mechanism of intracellular calcium measurement --- p.25 / Chapter 1.10 --- Background of E92/3 cell line --- p.28 / Chapter Chapter 2: --- Materials and methods --- p.29 / Chapter 2.1 --- Cell culture --- p.29 / Chapter 2.2 --- Preparation of the simultaneous measurement --- p.31 / Chapter 2.2.1 --- Cell seeding --- p.31 / Chapter 2.2.2 --- Dye loading --- p.33 / Chapter 2.3 --- The setup of simultaneous measurement --- p.36 / Chapter 2.4 --- Statistical analysis --- p.40 / Chapter Chapter 3: --- Results --- p.41 / Chapter 3.1 --- Major domain of Ca2+ influx is from the basolateral side --- p.41 / Chapter 3.1.1 --- Effect of store depletion by apical ATP --- p.41 / Chapter 3.1.2 --- Effect of store depletion by basolateral ATP --- p.43 / Chapter 3.1.3 --- Effect of store depletion by thapsigargin --- p.47 / Chapter 3.2 --- Differential effect of apical and basolateral nucleotides on [Ca2+]i and Isc --- p.51 / Chapter 3.2.1 --- Basolateral ATP activates an increase in [Ca2+]i but not Isc --- p.51 / Chapter 3.2.2 --- Apical and basolateral ATP activated distinct but partially overlapped internal Ca2+ pool --- p.51 / Chapter 3.2.3 --- "Dose-dependent effect of apical or basolateral ATP, UDP and UTP on [Ca2+]i i and Isc" --- p.54 / Chapter 3.3 --- P2Y receptors subtypes on the basolateral membrane --- p.60 / Chapter 3.3.1 --- "Possible involvement of P2X, P2Y1 and P2Y11 purinoceptors on the basolateral membrane" --- p.60 / Chapter 3.3.2 --- "Cross-desensitization of experiments of UTP, ATP and UDP" --- p.60 / Chapter 3.4 --- The ATP-activated Ca2+ pool and thapsigargin-activated Ca2+ pool are partially overlapped --- p.68 / Chapter 3.5 --- Anion secretion activated by Ca2+ -independent pathway --- p.74 / Chapter Chapter 4: --- Discussion --- p.76 / Chapter 4.1 --- The major membrane for the CCE is from the basolateral side --- p.76 / Chapter 4.2 --- Basolateral P2Y receptors --- p.80 / Chapter 4.3 --- Differential effects of apical and basolateral ATP --- p.82 / Chapter 4.3.1 --- Apical and basolateral ATP release Ca2+ from different pools --- p.83 / Chapter 4.3.2 --- Ca2+ -independent mechanism --- p.83 / Chapter 4.3.3 --- Other potential signaling molecules --- p.84 / Chapter Chapter 5: --- Reference --- p.86
|
5 |
Role of agonist- and flow-induced caclium influx in vascular tone control. / Role of agonist- and flow-induced Ca2+ influx in vascular tone control / CUHK electronic theses & dissertations collectionJanuary 2004 (has links)
"2+" in the title is superscript. / "December 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 179-204) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
6 |
Calcium transport and ATP hydrolytic activities in guinea-pig pancreatic acinar plasma membranesMahey, Rajesh January 1991 (has links)
The aim of the present investigation was to determine whether a plasma membrane high affinity Ca²+-ATPase plays an integral role in the maintenance of cytoplasmic free Ca²+ in pancreatic acinar cells. To achieve this, the Ca²+-transport and Ca²+-ATPase activities were characterized and their properties compared. Plasma membranes from guinea-pig pancreatic acini were shown to contain an ATP-dependent high affinity Ca²+-pump and a high affinity Ca²+-dependent ATPase activity. In addition, a low affinity ATPase activity was also observed. The high affinity Ca²+-ATPase activity as well as the Ca²+-transport were found to be dependent on Mg²+, whereas the low affinity ATPase activity appeared to be inhibited by Mg²+. The high affinity ATPase activity was 7-fold greater in magnitude than the Ca²+-transport. Whereas the Ca²+-transport was very specific for ATP as a substrate, the high affinity Ca²+-ATPase showed little specificity for various nucleotide triphosphates. These data would suggest that the Ca²+-transport and the high affinity Ca²+-dependent ATPase in guinea-pig pancreatic acinar plasma membranes may be two distinct activities
To further investigate whether the two activities were related, we investigated how the Ca²+-transport and Ca²+-ATPase activities were regulated by intracellular mediators. Regulation of the two activities by calmodulin, cyclic AMP-dependent protein kinase, Protein kinase C and inositol phosphates was investigated. Calmodulin failed to stimulate either activity. In addition, calmodulin antagonists, trifluoperazine and compound 48/80 produced a concentration-dependent inhibition of Ca²+-transport. These data suggested the presence of endogenous calmodulin. Both antagonists failed to influence the Ca²+-dependent ATPase activity. Experiments using boiled extracts from guinea-pig pancreatic acinar plasma membranes and erythrocyte plasma membranes Ca²+-ATPase confirmed the presence of endogenous calmodulin.
The catalytic subunit of cyclic AMP-dependent protein kinase stimulated Ca²+ transport, suggesting that cyclic AMP may have a role in the regulation of Ca²+-pump-mediated Ca²+ efflux from pancreatic acini. Ca²+-dependent ATPase activity, on the other hand, was not affected by the catalytic subunit. HA 1004, a specific inhibitor of cAMP-dependent protein kinase, failed to inhibit the Ca²+-transport and Ca²+-dependent ATPase activities. Since, this inhibitor was also ineffective at inhibiting the catalytic-subunit-stimulated Ca²+ transport, it may be concluded that HA 1004 is ineffective in blocking the actions of cAMP-dependent protein kinase in pancreatic acinar plasma membranes.
In our studies, purified protein kinase C, the phorbol ester TPA and the diacylglycerol derivative, SA-DG, failed to stimulate the Ca²+-uptake activity. However, these agents produced stimulation of the Ca²+-dependent ATPase activity in the presence of phosphatidylserine. CGP 41 251, a potent and selective inhibitor of protein kinase C, did not inhibit the Ca²+-transport or Ca²+-dependent ATPase activities. These observations suggest that protein kinase C may not be involved in the regulation of the plasma membrane Ca²+-pump in guinea-pig pancreatic acinar cells. These results also point to another difference between Ca²+-transport and the Ca²+-ATPase activities in guinea-pig pancreatic acinar plasma membranes.
Neither inositol trisphosphate nor inositol tetrakisphosphate produced a statistically significant effect on Ca²+-uptake, suggesting that IP₃- and/or IP₄-mediated Ca²+ releasing pathways may not operate in the isolated guinea-pig pancreatic acinar plasma membrane vesicles.
In summary, the results presented here provide evidence to suggest that the high affinity Ca²+-ATPase is not the biochemical expression of plasma membrane Ca²+-transport in panreatic acini. Our results imply a role for calmodulin and cAMP-dependent protein kinase, but not protein kinase C, in the regulation of Ca²+ efflux from pancreatic acinar cells. / Medicine, Faculty of / Anesthesiology, Pharmacology and Therapeutics, Department of / Graduate
|
7 |
Dietary calcium deficiency and inadequacy elevate blood cholesterol level in hamsters.January 2008 (has links)
Ma, Ka Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 113-129). / Abstracts in English and Chinese. / ACKNOWLEDGMENTS --- p.I / ABSTRACT --- p.II / LIST OF ABBREVIATIONS --- p.VII / TABLE OF CONTENTS --- p.IX / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Calcium --- p.1 / Chapter 1.1.1 --- Recommendation of calcium intake --- p.1 / Chapter 1.1.2 --- Calcium toxicity --- p.2 / Chapter 1.1.3 --- Calcium homeostasis --- p.2 / Chapter 1.1.3.1 --- Role of parathyroid hormone in calcium homeostasis --- p.4 / Chapter 1.1.3.2 --- "Role of 1,25-dihydroxyvitamin D3 in calcium homeostasis" --- p.4 / Chapter 1.1.3.3 --- Role of calcitonin in calcium homeostasis --- p.6 / Chapter 1.2 --- Magnesium --- p.7 / Chapter 1.2.1 --- Recommendation of magnesium intake --- p.7 / Chapter 1.2.2 --- Absorption and secretion of magnesium --- p.8 / Chapter 1.3 --- Cholesterol --- p.9 / Chapter 1.3.1 --- Cholesterol homeostasis --- p.11 / Chapter 1.3.1.1 --- Role of LDLR --- p.14 / Chapter 1.3.1.2 --- Role of SREBP-2 --- p.17 / Chapter 1.3.1.3 --- HMGR as rate limiting step for cholesterol synthesis --- p.19 / Chapter 1.3.1.4 --- CYP7A1 as a key factor in production of bile acids --- p.21 / Chapter 1.3.1.5 --- Role of LXR in production of bile acids --- p.22 / Chapter 1.3.1.6 --- AC AT regulates cholesterol uptake in intestine --- p.22 / Chapter Chapter 2 --- Effect of Calcium Deficiency and Inadequacy on Blood Cholesterol Level in Intact Male and Castrated Hamsters --- p.25 / Chapter 2.1 --- Introduction --- p.25 / Chapter 2.2 --- Objective --- p.28 / Chapter 2.3 --- Materials and methods --- p.29 / Chapter 2.3.1 --- Hamsters --- p.29 / Chapter 2.3.1.1 --- Intact male hamster --- p.29 / Chapter 2.3.1.2 --- Castrated hamster --- p.30 / Chapter 2.3.2 --- Diets --- p.31 / Chapter 2.3.3 --- Determination of calcium content in animal diet --- p.33 / Chapter 2.3.4 --- "Determination of serum lipid, lipoproteins and calcium concentration" --- p.33 / Chapter 2.3.5 --- Determination of cholesterol concentration in organs --- p.34 / Chapter 2.3.6 --- Determination of fecal neutral and acidic sterols --- p.37 / Chapter 2.3.7 --- Determination of fecal neutral sterols --- p.37 / Chapter 2.3.8 --- Determination of fecal acidic sterols --- p.40 / Chapter 2.3.9 --- Statistics --- p.42 / Chapter 2.4 --- Results on intact male hamsters --- p.43 / Chapter 2.4.1 --- Diet composition --- p.43 / Chapter 2.4.2 --- Growth and food intake --- p.43 / Chapter 2.4.3 --- Organ weights --- p.43 / Chapter 2.4.4 --- Effect of calcium deficiency diet on the plasma lipid profile and calcium concentration of hamsters --- p.43 / Chapter 2.4.5 --- Effect of calcium deficiency diet on hepatic cholesterol of hamsters --- p.44 / Chapter 2.4.6 --- Effect of calcium on fecal neutral sterol output --- p.48 / Chapter 2.4.7 --- Effect of calcium on fecal acidic sterol output --- p.48 / Chapter 2.5 --- Results on castrated hamsters --- p.50 / Chapter 2.5.1 --- Growth and food intake --- p.50 / Chapter 2.5.2 --- Organ weights --- p.50 / Chapter 2.5.3 --- Effect of calcium deficiency diet on the plasma lipid profile and calcium concentration of hamsters --- p.50 / Chapter 2.5.4 --- Hepatic cholesterol --- p.50 / Chapter 2.5.5 --- Effect of calcium on fecal neutral sterol output --- p.53 / Chapter 2.5.6 --- Effect of calcium on fecal acidic sterol output --- p.53 / Chapter 2.6 --- Discussion --- p.55 / Chapter Chapter 3 --- Effect of Calcium Deficiency and Inadequacy on Blood Cholesterol Level in Intact Female and Ovariectomized Hamsters --- p.57 / Chapter 3.1 --- Introduction --- p.57 / Chapter 3.2 --- Objective --- p.58 / Chapter 3.3 --- Materials and methods --- p.59 / Chapter 3.3.1 --- Hamsters --- p.59 / Chapter 3.3.1.1 --- Intact female hamster --- p.59 / Chapter 3.3.1.2 --- Ovariectomized hamster --- p.60 / Chapter 3.3.2 --- Diets --- p.60 / Chapter 3.3.3 --- "Determination of serum lipid, lipoproteins and calcium concentration" --- p.60 / Chapter 3.3.4 --- "Determination of cholesterol concentration in organs, fecal neutral and acidic sterols" --- p.60 / Chapter 3.3.5 --- "Western blottting of liver SREBP-2, LDLR, HMGR, LXR and CYP7A1 proteins" --- p.61 / Chapter 3.3.6 --- Preparation of intestinal microsome --- p.62 / Chapter 3.3.7 --- Intestinal acyl coenzyme A: cholesterol acyltransferase (ACAT) activity measurement --- p.63 / Chapter 3.3.8 --- Statistics --- p.64 / Chapter 3.4 --- Results on intact female hamsters --- p.65 / Chapter 3.4.1 --- Growth and food intake --- p.65 / Chapter 3.4.2 --- Organ weights --- p.65 / Chapter 3.4.3 --- Effect of calcium deficiency diet on the plasma lipid profile and calcium concentration of hamsters --- p.65 / Chapter 3.4.4 --- Effect of calcium deficiency diet on hepatic cholesterol of hamsters --- p.65 / Chapter 3.4.5 --- Effect of dietary calcium on fecal neutral sterol output --- p.66 / Chapter 3.4.6 --- Effect of dietary calcium on fecal acidic sterol output --- p.66 / Chapter 3.4.7 --- Effect of dietary calcium on liver LDLR immunoreactive mass --- p.71 / Chapter 3.4.8 --- Effect of dietary calcium on liver CYP7A1 immunoreactive mass --- p.71 / Chapter 3.4.9 --- Effect of dietary calcium on liver LXR immunoreactive mass --- p.71 / Chapter 3.4.10 --- Effect of dietary calcium on liver SREBP-2 immunoreactive mass --- p.71 / Chapter 3.4.11 --- Effect of dietary calcium on liver HMGR immunoreactive mass --- p.71 / Chapter 3.4.12 --- Effect of dietary calcium deficiency on intestinal ACAT activity --- p.77 / Chapter 3.5 --- Results on ovariectomized hamsters --- p.79 / Chapter 3.5.1 --- Growth and food intake --- p.79 / Chapter 3.5.2 --- Organ weights --- p.79 / Chapter 3.5.3 --- Effect of calcium deficiency diet on plasma lipid profile and calcium concentration of hamsters --- p.79 / Chapter 3.5.4 --- Hepatic cholesterol --- p.79 / Chapter 3.5.5 --- Effect of dietary calcium on fecal neutral sterol output --- p.80 / Chapter 3.5.6 --- Effect of dietary calcium on fecal acidic sterol output --- p.80 / Chapter 3.5.7 --- Effect of dietary calcium on liver LDLR immunoreactive mass --- p.85 / Chapter 3.5.8 --- Effect of dietary calcium on liver CYP7A1 immunoreactive mass --- p.85 / Chapter 3.5.9 --- Effect of dietary calcium on liver LXR immunoreactive mass --- p.85 / Chapter 3.5.10 --- Effect of dietary calcium on liver SREBP-2 immunoreactive mass --- p.85 / Chapter 3.5.11 --- Effect of dietary calcium on liver HMGR immunoreactive mass … --- p.85 / Chapter 3.6 --- Discussion --- p.91 / Chapter Chapter 4 --- Effect of Dietary Magnesium Supplementation on Blood Cholesterol Level in Intact Male Hamsters --- p.94 / Chapter 4.1 --- Introduction --- p.94 / Chapter 4.2 --- Objective --- p.96 / Chapter 4.3 --- Materials and methods --- p.97 / Chapter 4.3.1 --- Hamsters --- p.97 / Chapter 4.3.2 --- Diets --- p.98 / Chapter 4.3.3 --- "Determination of serum lipid, lipoproteins and magnesium concentration" --- p.100 / Chapter 4.3.4 --- "Determination of cholesterol concentration in organ, fecal neutral and acidic sterols" --- p.100 / Chapter 4.3.5 --- Statistics --- p.100 / Chapter 4.4 --- Results on male hamster --- p.101 / Chapter 4.4.1 --- Growth and food intake --- p.101 / Chapter 4.4.2 --- Organ weights --- p.101 / Chapter 4.4.3 --- Effect of dietary magnesium on plasma lipid profile and magnesium concentration in hamsters --- p.101 / Chapter 4.4.4 --- Effect of dietary magnesium on hepatic cholesterol of hamsters..… --- p.102 / Chapter 4.4.5 --- Effect of dietary magnesium on fecal neutral sterol output --- p.105 / Chapter 4.4.6 --- Effect of dietary magnesium on fecal acidic sterol output --- p.105 / Chapter 4.6 --- Discussion --- p.107 / Chapter Chapter 5 --- Conclusion --- p.110 / References --- p.113
|
8 |
Calcium-related signal transduction systems in developing visual cortexJia, Wei-Guo January 1991 (has links)
Neuronal connections in cat visual cortex are highly susceptible to visual experience at early postnatal age and thus serve as a useful model of neural plasticity. The biochemical mechanisms underlying this cortical plasticity remain unclear. In this thesis, the development of several elements in calcium-related signal transduction systems, including the type-1 muscarinic and alpha-1 adrenoceptor systems as examples of cell surface receptors and protein kinase C. calcium/calmodulin dependent kinase II and inositol 1,4,5 phosphotate receptors as second messenger targets, were investigated using the methods of immunocytochemistry and autoradiography. The results show that each receptor develops with its own time-table and laminar distribution; the various elements all culminate and display the maximal colocalization during the critical period; and, only at this age, the cortical levels of the receptors and kinases are dependent on subcortical afferents. The results suggest that cell surface receptors and their second messenger targets develop in specific temporal and spatial patterns, which may be both genetically and environmentally determined, and this specific sequence of development of the molecules for signal transduction results in a series of modifications in the morphology and physiology of the developing cortex leading to its maturation. / Medicine, Faculty of / Graduate
|
Page generated in 0.0419 seconds