• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dual regulation of voltage- and ligand-gated calcium channels by collapsin response mediator protein 2

Brittain, Joel Matthew 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Synaptic transmission is coordinated by a litany of protein-protein interactions that rely on the proper localization and function of pre- and post-synaptic Ca2+ channels. The axonal guidance/specification collapsin response mediator protein-2 (CRMP-2) was identified as a potential partner of the pre-synaptic N-type voltage-gated Ca2+ channel (CaV2.2). CRMP-2 bound directly to CaV2.2 in two regions; the channel domain I-II intracellular loop and the distal C-terminus. Both proteins co-localized within presynaptic sites in hippocampal neurons. Overexpression in hippocampal neurons of a CRMP-2 protein fused to EGFP caused a significant increase in Ca2+ channel current density whereas lentivirus-mediated CRMP-2 knockdown abolished this effect. Cell surface biotinylation studies showed an increased number of CaV2.2 at the cell surface in CRMP-2–overexpressing neurons. Both activity- and CRMP-2-phosphoryation altered the interaction between CaV2.2 and CRMP-2. I identified a CRMP-2-derived peptide (called CBD3) that bound CaV2.2 and effectively disrupted the interaction between CaV2.2 and CRMP-2. CBD3 peptide fused to the HIV TAT protein (TAT-CBD3) decreased neuropeptide release from sensory neurons and excitatory synaptic transmission in dorsal horn neurons, and reversed neuropathic hypersensitivity produced by an antiretroviral drug. Unchecked Ca2+ influx via N-methyl-D-aspartate receptors (NMDARs) has been linked to activation of neurotoxic cascades culminating in cell death (i.e. excitotoxicity). CRMP-2 was suggested to affect NMDAR trafficking and possibly involved in neuronal survival following excitotoxicity. Based upon these studies, I hypothesized that a peptide from CRMP2 could preserve neurons in the face of excitotoxic challenges. Lentiviral–mediated CRMP2 knockdown or treatment with TAT-CBD3 blocked neuronal death following glutamate exposure likely via blunting toxicity from NMDAR-mediated delayed calcium deregulation. TAT-CBD3 induced internalization of the NMDAR subunit NR2B in dendritic spines without altering somal surface expression. TAT-CBD3 reduced NMDA-mediated Ca2+-influx and currents in cultured neurons. The presented work validates CRMP-2 as a novel modulator of pre- and post-synaptic Ca2+ channels and provides evidence that the TAT-CBD3 peptide could be useful as a potential therapeutic for both chronic neuropathic pain and excitotoxicity following stroke or other neuronal insults.
2

Design and Synthesis of Small-Molecule Protein-Protein Interaction Antagonists

Han, Xu January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Protein-protein interactions play a crucial role in a wide range of biological processes. Research on the design and synthesis of small molecules to modulate these proteinprotein interactions can lead to new targets and drugs to modulate their function. In Chapter one, we discuss the design and synthesis of small molecules to probe a proteinprotein interaction in a voltage-gated Ca2+ channel. Virtual screening identified a compound (BTT-3) that contained a 3,4-dihydro-3,4’-pyrazole core. This compound had modest biological activity when tested in a fluorescence polarization (FP) assay. The synthetic route to BTT-3 consisted of six steps. In addition, analogs of BTT-3 were made for a structure-activity study to establish the importance of a carboxylate moiety. We also synthesized a biotinylated benzophenone photo-affinity probe and linked it to BTT-3 to identify additional protein targets of the compound. In Chapter two, small-molecule antagonists targeting uPA-uPAR protein-protein interaction are presented. A total of 500 commercially-available compounds were previously identified by virtual screening and tested by a FP assay. Three classes of compounds were found with biological activity. The first class of compounds contains pyrrolidone core structures represented by IPR- 1110, the second class has a novel pyrrolo[3,4-c]pyrazole ring system, represented by xv IPR-1283 and the last series had compounds with a 1,2-disubstituted 1,2- dihydropyrrolo[3,4-b]indol-3(4H)-one core structure, represented by IPR-540. Each of these three compounds were synthesized and assessed by FP and ELISA assays. A binding mode of IPR-1110 with uPA was subsequently proposed. Based on this binding mode, another 61 IPR-1110 derivatives were synthesized by us to illustrate the SAR activity. Analogs of the other two series were also synthesized.
3

Interplay between collapsin response mediator protein 2 (CRMP2) phosphorylation and sumoylation modulates NaV1.7 trafficking

Dustrude, Erik Thomas 06 July 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The voltage-gated sodium channel Nav1.7 has gained traction as a pain target with recognition that loss-of-function mutations in SCN9A, the gene encoding Nav1.7, are associated with congenital insensitivity to pain, whereas gain-of-function mutations produce distinct pain syndromes due to increased Nav1.7 activity. Selective inhibition of Nav1.7 is fundamental to modulating pain via this channel. Understanding the regulation of Nav1.7 at the cellular and molecular level is critical for advancing better therapeutics for pain. Although trafficking of Nav1.7 remains poorly understood, recent studies have begun to investigate post-translational modifications of Navs and/or auxiliary subunits as well as protein-protein interactions as Nav-trafficking mechanisms. Here, I tested if post-translational modifications of a novel Nav1.7-interacting protein, the axonal collapsin response mediator protein 2 (CRMP2) by small ubiquitin-like modifier (SUMO) and phosphorylation could affect Nav trafficking and function. Expression of a CRMP2 SUMOylation incompetent mutant (CRMP2-K374A) in neuronal model CAD cells, which express predominantly Nav1.7 currents, led to a significant reduction in huwentoxin-IV-sensitive Nav1.7 currents. Increasing deSUMOylation with sentrin/SUMO-specific protease SENP1 or SENP2 in wildtype CRMP2-expressing CAD cells decreased Nav1.7 currents. Consistent with reduced current density, biotinylation revealed significant reduction in surface Nav1.7 levels of CAD cells expressing CRMP2-K374A or SENP proteins. Diminution of Nav1.7 sodium current was recapitulated in sensory neurons expressing CRMP2-K374A. Because CRMP2 functions are regulated by its phosphorylation state, I next investigated possible interplay between phosphorylation and SUMOylation of CRMP2 on Nav1.7. Phosphorylation of CRMP2 by cyclin dependent kinase 5 (Cdk5) was necessary for maintaining Nav1.7 surface expression and current density whereas phosphorylation by Fyn kinase reduced CRMP2 SUMOylation and Nav1.7 current density. Binding to Nav1.7 was decreased following (i) loss of CRMP2 SUMOylation, (ii) loss of CRMP2 phosphorylation by Cdk5, or (iii) gain of CRMP2 phosphorylation by Fyn. Altering CRMP2 modification events simultaneously was not synergistic in reducing Nav1.7 currents, suggesting that Nav1.7 co-opts multiple CRMP2 modifications for regulatory control of this channel. Loss of either CRMP2 SUMOylation or Cdk5 phosphorylation triggered Nav1.7 internalization involving E3 ubiquitin ligase Nedd4-2 as well as endocytosis adaptor proteins Numb and Eps15. Collectively, my findings identify a novel mechanism for regulation of Nav1.7.
4

THE ROLE OF THE NMDA RECEPTOR AND REVERSE SODIUM CALCIUM EXCHANGER IN CALCIUM DYSREGULATION IN GLUTAMATE-EXPOSED NEURONS

Brittain, Matthew K. 29 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: During glutamate excitotoxicity, overstimulation of glutamate receptors leads to sustained elevation in cytosolic Ca2+ ([Ca2+]c), or delayed Ca2+ dysregulation (DCD), which is causally linked to cell death. There are two major hypothetical mechanisms for DCD: the continuous activation of N-methyl-D-aspartate-subtype of the ionotropic glutamate receptors (NMDAR) and the reversal of the plasmalemmal Na+/Ca2+ exchanger. However, the contribution of each of these mechanisms in DCD is not completely established. Major results: Neurons exposed to excitotoxic glutamate produced DCD, an increase in cytosolic Na+ ([Na+]c), and plasma membrane depolarization. MK801 and memantine, noncompetitive NMDAR inhibitors, added after glutamate, completely prevented DCD; however AP-5, a competitive NMDAR inhibitor, failed to do so. The NMDAR inhibitors had no effect on lowering elevated [Na+]c or on restoring plasma membrane potential, which are conditions suggesting NCXrev could be involved. In experiments inducing NCXrev, MK801 and memantine completely inhibited Ca2+ dysregulation after glutamate while AP-5 did not. Inhibition of NCXrev, either with KB-R7943 or by preventing the increase in [Na+]c, failed to avert DCD. However, NCXrev inhibition combined with NMDAR blocked by AP-5 completely prevented DCD. Overall, these data suggested that both NMDAR and NCXrev are essential for glutamate-induced DCD, and inhibition of only one mechanism is insufficient to prevent collapse of calcium homeostasis. Based on the data above, we investigated a NMDA receptor antagonist currently in clinical trials for reducing the effects of glutamate excitotoxicity, ifenprodil. Ifenprodil is an activity-dependent, NMDAR inhibitor selective for the NR2B subunit. We found that ifenprodil not only inhibited the NR2B-specific NMDAR, but also inhibited NCXrev. If ifenprodil is combined with PEAQX, a NMDAR inhibitor selective for the NR2A subunit, low concentrations of both inhibitors completely prevent DCD. Conclusion: The inhibition of a single Ca2+ influx mechanism is insufficient in preventing DCD, which requires simultaneous inhibition of both the NMDAR and NCXrev. These findings are critical for the correct interpretation of the experimental results obtained with these inhibitors and for better understanding of their neuroprotective actions.

Page generated in 0.0926 seconds