Spelling suggestions: "subject:"calcium inhibition"" "subject:"alcium inhibition""
1 |
Investigating pretreatment methods for struvite precipitation in liquid dairy manureShen, Yanwen 16 July 2010 (has links)
Phosphorus (P) recovery and re-use is very important today for sustainable nutrient cycling and water quality protection due to the declining global P reserves and increasingly stringent wastewater treatment regulations. P recovery as struvite (MgNH4PO4·6H2O) is a promising technology because it can be used as a slow-release fertilizer. The objective of this study was to investigate different pretreatment methods to enhance struvite precipitation in dairy manure.
Generally there are two challenges that need to be overcome to precipitate struvite in liquid dairy manure. The first is the relatively high calcium (Ca) concentration. The present study investigated the effectiveness of two calcium binding reagents to reduce the calcium inhibitory effects to enhance the struvite precipitation. A chemical equilibrium model (Visual MINTEQ 2.60) was used to determine the pH to acidify manure and to precipitate struvite. Then, bench-scale experiments were conducted to validate the model results using synthetic and untreated manure. First, the manure was acidified (pH 4.5) to liberate the particulate-bounded Mg2+, Ca2+ and inorganic P. Second, EDTA and/or oxalate compounds were added to the manure. Third, pH was increased to 7.5 for struvite precipitation from the liquid filtrate. Results showed that struvite-containing crystals were obtained from the samples treated with calcium removal compounds, with a total suspended solids (TSS) concentration less than 4,000 mg/L.
The second challenge is the low dissolved reactive P (DRP, i.e. PO4-P) to total P (TP) ratio. This study investigated different pretreatment methods for P release to enhance struvite precipitation in liquid dairy manure: enhanced biological phosphorus removal (EBPR), microwave heating (MW) and anaerobic digestion (AD). All of the pretreatment methods resulted in P release but struvite crystals were observed only in precipitates obtained in manure pretreated with MW+H2SO4 acidification. Without oxalic acid to reduce the Ca2+ effects, all the other pretreatment methods were not effective in enhancing struvite precipitation in liquid dairy manure. Hardly any struvite or crystalline-like solids were found in the non-centrifuged samples, regardless of any pretreatment, indicating the effects of suspended solids and organic matter on struvite precipitation.
A partial economic analysis was conducted to assess the chemical costs of P recovery from liquid dairy manure with different pretreatment methods; P recovery amounts as struvite were modeled by Visual Minteq 2.61.Three pretreatment conditions (untreated manure + oxalic acid, MW + H2SO4 acidification, and AD) were selected based on the precipitation results. MW + H2SO4 acidification produced the highest struvite quantities among the pretreatment methods to enhance struvite recovery, also with the lowest chemical addition costs. / Master of Science
|
2 |
Vliv neurosteroidů na aktivitu neuronální sítě in vitro. / Neurosteroid effects on neuronal network activity in vitro.Strnadová, Lenka January 2021 (has links)
GABA receptors type A (GABAAR) are ligand-gated ion channels permeable for chloride anions. In the mammalian brain they mediate most of the inhibitory transmission. Moreover, the dysfunctions of the GABA-mediated system result in many neurological disorders, including epilepsy, anxiety and depression. Neurosteroids are cholesterol metabolites interacting with a variety of membrane receptors and have a direct effect on neuronal excitability. The neurosteroids allo-pregnanolone (allo-PA) and pregnanolone (PA) are potent positive modulators of the GABAAR. The goal of this work is to establish a newly constructed application system and a calcium imaging method using the GCaMP sensor to examine the effects of PA on the activity of primary hippocampal cultures. In this work we validate the application system and test the GCaMP calcium sensor in vitro. Application of PA inhibited the spontaneous calcium peaks, which agrees with its known actions on the GABAAR. We discovered that the neurosteroid inhibitory effect on the neuronal network activity changes after repeated applications. The results suggest that there might be some compensatory actions on the GABAAR level during prolonged or repeated exposition to PA. Key words: GABAAR; neurosteroid; pregnanolone; allopregnanolone; calcium; GCaMP; inhibition
|
3 |
Constant-pH molecular dynamics simulations of an alkaline-gated ion channel / Konstant-pH simuleringar av en jonkanal aktiverad av en alkalisk miljöYgland, Ida January 2024 (has links)
Ligand-gated ion channels play an important role in electrochemical signal transduction across diverse organisms, yet their structural and functional intricacies are not fully understood. Particularly lacking is the knowledge of their response to variations in pH, an aspect necessary for understanding their physiological relevance and potential therapeutic targeting in neurological diseases. In this thesis project, I have investigated the mechanistic response of sTeLIC, a recently reported prokaryotic member of the pentameric ligand-gated ion channel family, to different environmental conditions. Using molecular dynamics simulations, a total of 16 different environmental conditions have been explored including variations in pH (neutral and alkaline), the presence and absence of calcium, and the inclusion of an electric field acting as an external driving force on charged atoms. The results reveal a comprehensive pH-sensing and gating mechanism involving key residues, notably E106 (on the β6 strand) and E160 (on loop F), and their local microenvironments. Additionally, an inhibitory mechanism for calcium is proposed, with E160 playing an important role. The simulations including an electric field has provided support for a non-conventional ion pathway through the pore. Collectively, these results offer insights into a mechanistic framework that may extend to other physiologically relevant systems, providing a foundation for further investigations and potential future therapeutic intervention. / pLGICs har en viktig roll i det elektrokemiska signalsystemet i många organismer, men detaljerna i deras struktur och framför allt funktion är fortfarande inte helt klargjorda. Särskilt är detaljerna kring deras reaktion på ändringar i pH-värde relativt okända, vilket är en viktig del i att förstå kanalernas fysiologiska roll och för att potentiellt hitta läkemedel mot neurologiska sjukdomar där dessa är inblandade. I det här arbetet har jag undersökt hur sTeLIC, som är ett nyligen publicerat bakteriellt protein i familjen pLGICs, reagerar på olika ändringar i miljön. Jag har använt molekyldynamiksimuleringar för att unders öka 16 olika miljöer med två olika pH-värden (neutralt och alkaliskt), med eller utan kalcium samt med eller utan en extern drivkraft över membranet i form av ett elektrisk fält. Arbetet har resulterat i en föreslagen mekanism förhur sTeLIC känner av pH och hur öppningen av kanalen går till. Denna mekanism involverar aminosyrorna E106, som finns på β6-strängen, och E160, som finns på F-loopen, samt deras omgivning. Dessutom har en modulatorisk mekanism föreslagits för en kalciuminhiberande effekt på sTeLIC som också involverar E160. Simuleringarna med en drivkraft över membranet har gett stöd för en ny väg för joner genom kanalen. Tillsammans ger dessa resultat insikt i en mekanism som eventuellt kan appliceras p ̊a andra system. Detta har lagt grunden för fortsatt undersökning som potentiellt kan leda till framtida läkemedelsutveckling inom området.
|
Page generated in 0.088 seconds