• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Flux Declination Predication Model for Nanoparticle-Containing Wastewaters Treated by a Simultaneous Electrocoagulation/Electrofiltration Process

Liu, Chun 15 February 2007 (has links)
A flux declination predication model for nanoparticle-containing wastewaters treated by a simultaneous electrocoagulation/electro- filtration (EC/EF) process was investigated by perceiving blocked membrane pores, concentration polarization layer, cake layer, and applied electric field strength in this study. As nanotechnology develops, it has been used in many applications. However, its environmental impacts have not been extensively studied. Membrane technology is one of the direct and effective treatment methods for removing nanoparticles from wastewater. But nanoparticle-containing wastewater treated by membrane technology would face the problem of membrane fouling. In this study, oxide chemical mechanical polishing (CMP) wastewater, copper CMP wastewater, and nanosized TiO2-containing wastewater were treated by a EC/EF treatment module. In the EC/EF treatment module, iron, aluminum, and stainless steel were respectively selected as th anode and cathode. Polyvinylidene fluoride (PVDF) with a nominal pore size of 0.1 £gm and carbon/Al2O3 tubular inorganic composite membranes with a pore size ranging from 2 to 10 nm were used in this work. In this work, the changes of the relevant performance of membrane with changes of applied pressure (9.8-19.6 kPa), crossflow velocity (0.3-0.5 m/s) and applied electric filed strength (25-233 V/cm) were studied. The simulation results of a modified mathematic model showed that the flux declination would be fitted finely by an exponential function. Experimental results showed that a higher transmembrane pressure would yield a higher cake concentration and a higher crossflow velocity would yield the steady flux quickly. Overall speaking, the flux declination for nanoparticle-containing wastewaters treated by a simulataneous EC/EF process was described properly as a exponential form. The exponential function could simply show the flux declination of different samples treated by different modules in different situations.
2

Diffraction résonnante des rayons X dans des systèmes multiferroïques / X-ray resonant scatering on multiferroic systems

Elzo Aizarna, Marta Ainhoa 28 September 2012 (has links)
Le but de cette thèse est d'explorer la faisabilité d'expériences de diffraction résonante sur des systèmes multiferroïques et en particulier avec un champ/courrant électrique appliqué. Un formalisme de matrices de propagation a été développé pour simuler la réflectivité résonante, en utilisant un ensemble d'ondes propres comme base arithmétique pour le calcul. Des expériences de diffraction résonante ont été menées sur trois oxides de métaux de transition. Cette technique combinant la selectivité chimique et la sensibité à l'espace réciproque, elle a été utilisée sur des films très minces de PbTiO3 pour étudier la structure atomique d'un agencement périodique de domaines ferroélectriques. La signatures spectroscopiques observées par nos expériences de diffraction X durs sont reproduites par des simulations ab-initio FDMNES de super-cellules complexes. Dans le domaine X mous, nous avons étudié la structure antiferromagnétique cycloïdale du multiferroïque BiFeO3, et plus spécialement l'empreinte de la cycloïde sur une couche mince de Co déposée sur le matériau multiferroïque. Nous présentons également une expérience dans laquelle nous avons tenté d'explorer l'effet d'un courant électrique appliqué sur un film mince du composé à ordre de charge Pr(1-x)Ca(x)MnO3. La dernière partie est consacrée à l'instrumentation. Nous passons en revue les lignes synchrotron européennes et les diffractomètres qui permettent de faire des expériences de diffraction résonante de rayons X. Pour finir, nous détaillons un nouveau porte-échantillon que nous avons développé et testé sur le diffractomètre RESOXS, et qui permet d'appliquer un champ/courant électrique. / The aim of this thesis is to explore the capabilities offered by resonant X-ray scattering for the study of multiferroic systems with a special emphasis on the feasibility of such experiments under applied electric field/current. Boundary propagation matrices formalism has been developed for the simulation of resonant reflectivity, using a set of eigenwaves as a basis for the computation. Resonant X-ray experiments were performed on three transition metal oxides. This technique combines chemical selectivity and reciprocal space information, and was used on very thin films of PbTiO3 to solve the atomic structure of a periodic pattern of ferroelectric domains. The spectroscopic signatures observed in our hard X-ray experiments are well reproduced with FDMNES ab-initio simulations of complex super cells. In the soft X-ray range, we studied the cycloidal antiferromagnetic structure of multiferroic BiFeO3 and especially the imprint of the cycloid on a 10 nm-thin layer of Co deposited on top of the multiferroic bulk material. We also present an experiment in which we tried to explore the effect of an electrical current applied on a thin film of charge-ordered Pr(1-x)Ca(x)MnO3. Last part is dedicated to instrumentation. We summarize the state of the art of european synchrotron beamlines and diffractometers which can host resonant X-ray diffraction experiments. Finally, we detail a new sample holder that we developed and tested in the high-vacuum diffractometer RESOXS, which allows for the application of an electric field/current.
3

Mortar finite element method for cell response to applied electric field

Pérez, Cesar Augusto Conopoima 25 October 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-11T16:41:11Z No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-22T16:42:49Z (GMT) No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) / Made available in DSpace on 2018-01-22T16:42:49Z (GMT). No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) Previous issue date: 2017-10-25 / A resposta passiva e ativa de uma célula biológica a um campo elétrico é estudada aplicando um Método de Elementos Finitos Mortar MEFM. A resposta de uma célula é um processo com duas escalas temporais, o primeiro na escala de microsegundos para a polarização da célula e o segundo na escala de milisegundos para a resposta ativa devido a dinâmica complexa das correntes nos canais iônicos da membrana celular. O modelo matemático para descrever a dinâmica da resposta celular é baseado na lei de conservação de corrente elétrica em um meio condutor. Introduzindo uma variável adicional conhecida como multiplicador de Lagrange definido na interface da célula, o problema de valor de fronteira associado a conservação de corrente elétrica é desacoplado do problema de valor inicial associado a responta passiva e ativa da célula. O método proposto permite resolver o problema da distribuição de potencial elétrico em um arranjo geométrico arbitrário de células. Com o objetivo de validar a metodologia apresentada, a convergência espacial do método é numericamente investigada e a solução aproxima e exata que descreve a polarização de uma célula, são comparadas. Finalmente, para demonstrar a efetividade do método, a resposta ativa a um campo elétrico aplicado num arranjo de células de geometria arbitraria é investigada. / The response of passive and active biological cell to applied electric field is investigated with a Mortar Finite Element Method MFEM. Cells response is a process with two different time scales, one in microseconds for the cell polarization and the other in milliseconds for the active response of the cell due to the complex dynamics of the ion-channel current on the cell membrane. The mathematical model to describe the dynamics of the cell response is based on the conservation law of electric current in a conductive medium. By introducing an additional variable known as Lagrange multiplier defined on the cell interface, the boundary value problem associated to the conservation of electric current is decoupled from the initial value problem associated to the passive and active response of the cell. The proposed method allows to solve electric potential distribution in arbitrary cell geometry and arrangements. In order to validate the presented methodology, the h-convergence order of the MFEM is numerically investigated. The numerical and exact solutions describing cell polarization are also compared. Finally, to demonstrate the effectiveness of the method, the active response to an applied electric field in cells clusters and cells with arbitrary geometry are investigated.

Page generated in 0.0787 seconds