• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On some problems in the simulation of flow and transport through porous media

Thomas, Sunil George 20 October 2009 (has links)
The dynamic solution of multiphase flow through porous media is of special interest to several fields of science and engineering, such as petroleum, geology and geophysics, bio-medical, civil and environmental, chemical engineering and many other disciplines. A natural application is the modeling of the flow of two immiscible fluids (phases) in a reservoir. Others, that are broadly based and considered in this work include the hydrodynamic dispersion (as in reactive transport) of a solute or tracer chemical through a fluid phase. Reservoir properties like permeability and porosity greatly influence the flow of these phases. Often, these vary across several orders of magnitude and can be discontinuous functions. Furthermore, they are generally not known to a desired level of accuracy or detail and special inverse problems need to be solved in order to obtain their estimates. Based on the physics dominating a given sub-region of the porous medium, numerical solutions to such flow problems may require different discretization schemes or different governing equations in adjacent regions. The need to couple solutions to such schemes gives rise to challenging domain decomposition problems. Finally, on an application level, present day environment concerns have resulted in a widespread increase in CO₂capture and storage experiments across the globe. This presents a huge modeling challenge for the future. This research work is divided into sections that aim to study various inter-connected problems that are of significance in sub-surface porous media applications. The first section studies an application of mortar (as well as nonmortar, i.e., enhanced velocity) mixed finite element methods (MMFEM and EV-MFEM) to problems in porous media flow. The mortar spaces are first used to develop a multiscale approach for parabolic problems in porous media applications. The implementation of the mortar mixed method is presented for two-phase immiscible flow and some a priori error estimates are then derived for the case of slightly compressible single-phase Darcy flow. Following this, the problem of modeling flow coupled to reactive transport is studied. Applications of such problems include modeling bio-remediation of oil spills and other subsurface hazardous wastes, angiogenesis in the transition of tumors from a dormant to a malignant state, contaminant transport in groundwater flow and acid injection around well bores to increase the permeability of the surrounding rock. Several numerical results are presented that demonstrate the efficiency of the method when compared to traditional approaches. The section following this examines (non-mortar) enhanced velocity finite element methods for solving multiphase flow coupled to species transport on non-matching multiblock grids. The results from this section indicate that this is the recommended method of choice for such problems. Next, a mortar finite element method is formulated and implemented that extends the scope of the classical mortar mixed finite element method developed by Arbogast et al [12] for elliptic problems and Girault et al [62] for coupling different numerical discretization schemes. Some significant areas of application include the coupling of pore-scale network models with the classical continuum models for steady single-phase Darcy flow as well as the coupling of different numerical methods such as discontinuous Galerkin and mixed finite element methods in different sub-domains for the case of single phase flow [21, 109]. These hold promise for applications where a high level of detail and accuracy is desired in one part of the domain (often associated with very small length scales as in pore-scale network models) and a much lower level of detail at other parts of the domain (at much larger length scales). Examples include modeling of the flow around well bores or through faulted reservoirs. The next section presents a parallel stochastic approximation method [68, 76] applied to inverse modeling and gives several promising results that address the problem of uncertainty associated with the parameters governing multiphase flow partial differential equations. For example, medium properties such as absolute permeability and porosity greatly influence the flow behavior, but are rarely known to even a reasonable level of accuracy and are very often upscaled to large areas or volumes based on seismic measurements at discrete points. The results in this section show that by using a few measurements of the primary unknowns in multiphase flow such as fluid pressures and concentrations as well as well-log data, one can define an objective function of the medium properties to be determined, which is then minimized to determine the properties using (as in this case) a stochastic analog of Newton’s method. The last section is devoted to a significant and current application area. It presents a parallel and efficient iteratively coupled implicit pressure, explicit concentration formulation (IMPEC) [52–54] for non-isothermal compositional flow problems. The goal is to perform predictive modeling simulations for CO₂sequestration experiments. While the sections presented in this work cover a broad range of topics they are actually tied to each other and serve to achieve the unifying, ultimate goal of developing a complete and robust reservoir simulator. The major results of this work, particularly in the application of MMFEM and EV-MFEM to multiphysics couplings of multiphase flow and transport as well as in the modeling of EOS non-isothermal compositional flow applied to CO₂sequestration, suggest that multiblock/multimodel methods applied in a robust parallel computational framework is invaluable when attempting to solve problems as described in Chapter 7. As an example, one may consider a closed loop control system for managing oil production or CO₂sequestration experiments in huge formations (the “instrumented oil field”). Most of the computationally costly activity occurs around a few wells. Thus one has to be able to seamlessly connect the above components while running many forward simulations on parallel clusters in a multiblock and multimodel setting where most domains employ an isothermal single-phase flow model except a few around well bores that employ, say, a non-isothermal compositional model. Simultaneously, cheap and efficient stochastic methods as in Chapter 8, may be used to generate history matches of well and/or sensor-measured solution data, to arrive at better estimates of the medium properties on the fly. This is obviously beyond the scope of the current work but represents the over-arching goal of this research. / text
2

Méthodes non-conformes de décomposition de domaine à grande échelle / Large scale nonconforming domain decomposition methods

Samaké, Abdoulaye 08 December 2014 (has links)
Cette thèse étudie les méthodes de décomposition de domaine généralement classées soit comme des méthodes de Schwarz avec recouvrement ou des méthodes par sous-structuration s'appuyant sur des sous-domaines sans recouvrement. Nous nous focalisons principalement sur la méthode des éléments finis joints, aussi appelée la méthode mortar, une approche non conforme des méthodes par sous-structuration impliquant des contraintes de continuité faible sur l'espace d'approximation. Nous introduisons un framework élément fini pour la conception et l'analyse des préconditionneurs par sous-structuration pour une résolution efficace du système linéaire provenant d'une telle méthode de discrétisation. Une attention particulière est accordée à la construction du préconditionneur grille grossière, notamment la principale variante proposée dans ce travailutilisant la méthode de Galerkin Discontinue avec pénalisation intérieure comme problème grossier. D'autres méthodes de décomposition de domaine, telles que les méthodes de Schwarz et la méthode dite three-field sont étudiées dans l'objectif d'établir un environnement de programmation générique d'enseignement et de recherche pour une large gamme de ces méthodes. Nous développons un framework de calcul avancé et dédié à la mise en oeuvre parallèle des méthodesnumériques et des préconditionneurs introduits dans cette thèse. L'efficacité et la scalabilité des préconditionneurs, ainsi que la performance des algorithmes parallèles sont illustrées par des expériences numériques effectuées sur des architectures parallèles à très grande échelle. / This thesis investigates domain decomposition methods, commonly classified as either overlapping Schwarz methods or iterative substructuring methods relying on nonoverlapping subdomains. We mainly focus on the mortar finite element method, a nonconforming approach of substructuring method involving weak continuity constraints on the approximation space. We introduce a finiteelement framework for the design and the analysis of the substructuring preconditioners for an efficient solution of the linear system arising from such a discretization method. Particular consideration is given to the construction of the coarse grid preconditioner, specifically the main variantproposed in this work, using a Discontinuous Galerkin interior penalty method as coarse problem. Other domain decomposition methods, such as Schwarz methods and the so-called three-field method are surveyed with the purpose of establishing a generic teaching and research programming environment for a wide range of these methods. We develop an advanced computational framework dedicated to the parallel implementation of numerical methods and preconditioners introduced in this thesis. The efficiency and the scalability of the preconditioners, and the performance of parallel algorithms are illustrated by numerical experiments performed on large scale parallel architectures.
3

Mortar finite element method for cell response to applied electric field

Pérez, Cesar Augusto Conopoima 25 October 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-11T16:41:11Z No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-22T16:42:49Z (GMT) No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) / Made available in DSpace on 2018-01-22T16:42:49Z (GMT). No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) Previous issue date: 2017-10-25 / A resposta passiva e ativa de uma célula biológica a um campo elétrico é estudada aplicando um Método de Elementos Finitos Mortar MEFM. A resposta de uma célula é um processo com duas escalas temporais, o primeiro na escala de microsegundos para a polarização da célula e o segundo na escala de milisegundos para a resposta ativa devido a dinâmica complexa das correntes nos canais iônicos da membrana celular. O modelo matemático para descrever a dinâmica da resposta celular é baseado na lei de conservação de corrente elétrica em um meio condutor. Introduzindo uma variável adicional conhecida como multiplicador de Lagrange definido na interface da célula, o problema de valor de fronteira associado a conservação de corrente elétrica é desacoplado do problema de valor inicial associado a responta passiva e ativa da célula. O método proposto permite resolver o problema da distribuição de potencial elétrico em um arranjo geométrico arbitrário de células. Com o objetivo de validar a metodologia apresentada, a convergência espacial do método é numericamente investigada e a solução aproxima e exata que descreve a polarização de uma célula, são comparadas. Finalmente, para demonstrar a efetividade do método, a resposta ativa a um campo elétrico aplicado num arranjo de células de geometria arbitraria é investigada. / The response of passive and active biological cell to applied electric field is investigated with a Mortar Finite Element Method MFEM. Cells response is a process with two different time scales, one in microseconds for the cell polarization and the other in milliseconds for the active response of the cell due to the complex dynamics of the ion-channel current on the cell membrane. The mathematical model to describe the dynamics of the cell response is based on the conservation law of electric current in a conductive medium. By introducing an additional variable known as Lagrange multiplier defined on the cell interface, the boundary value problem associated to the conservation of electric current is decoupled from the initial value problem associated to the passive and active response of the cell. The proposed method allows to solve electric potential distribution in arbitrary cell geometry and arrangements. In order to validate the presented methodology, the h-convergence order of the MFEM is numerically investigated. The numerical and exact solutions describing cell polarization are also compared. Finally, to demonstrate the effectiveness of the method, the active response to an applied electric field in cells clusters and cells with arbitrary geometry are investigated.

Page generated in 0.1164 seconds