• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A statistical parameter estimation method using singular value decomposition with application to Avra Valley aquifer in southern Arizona

Jacobson, Elizabeth A. January 1985 (has links)
Inverse modeling of aquifers usually involves identification of effective parameters such as transmissivities over a finite number of subregions, or zones. Theoretical restrictions on the maximum size of a zone for which such effective transmissivities can be properly defined and the desire to obtain a good resolution of the spatial variability of transmissivity may suggest that the aquifer be divided into numerous small zones. Considerations of parameter identifiability, on the other hand, may require that the number of unknown transmissivities be limited. To satisfy both requirements, an inverse approach has been developed in which the number of zones can be as large as deemed necessary on the basis of hydrogeological considerations. However, instead of trying to estimate a similar number of transmissivities, a smaller number of surrogate parameters, which are defined as linear combinations of the original log transmissivities, is estimated. The optimum number and definition of the surrogate parameters are determined through a singular value decomposition of a matrix arising from the linearization of the inverse problem. A "resolution matrix" and an "information density matrix" can also be obtained from the singular value decomposition. The resolution matrix is indicative of parameter identifiability and is valuable in deciding whether specific log-transmissivity zones should be lumped with their neighbors or left intact. The information density matrix shows how well the model can reproduce each measured hydraulic head value and may be used to determine the relative worth of each datum point for parameter estimation. This, in turn, may suggest discontinuing the collection of certain data and/or starting to collect data at other points in the aquifer. The methodology is illustrated by using data from the Avra Valley aquifer of southern Arizona.
2

Modelo para calculo de fluxo sanguineo periferico

NORONHA, M.P.L. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:50:37Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:58Z (GMT). No. of bitstreams: 1 00694.pdf: 1855025 bytes, checksum: 6c25433cbddf2c8d170f6f4df0705156 (MD5) / Dissertacao (Mestrado) / IEA/D / Instituto de Fisica, Universidade de Sao Paulo - IF/USP
3

Modelo para calculo de fluxo sanguineo periferico

NORONHA, M.P.L. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:50:37Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:58Z (GMT). No. of bitstreams: 1 00694.pdf: 1855025 bytes, checksum: 6c25433cbddf2c8d170f6f4df0705156 (MD5) / Dissertacao (Mestrado) / IEA/D / Instituto de Fisica, Universidade de Sao Paulo - IF/USP
4

Computation of flows by the finite volume method as applied to unstructured meshes

Chan, Chun Tat January 1997 (has links)
No description available.
5

Developing a Fluid Flow Model for Mobile Video Transmission in the Presence of Play-Out Hysteresis

Dehghannayyeri, Atefeh January 2016 (has links)
This work focuses on improving video transmission quality over a mobile link. More specifically, the impact of buffering and link outages on the freeze probability of transmitted videos is studied. It introduces a new fluid flow model that provides an approximation of the freeze probability in the presence of play-out hysteresis. The proposed model is used to study the impact of two streaming buffer sizes over different possible combinations of outage parameters (data channel on/off times). The outcome of this thesis shows that outage parameters play a dominant role in freezing of streaming video content, and that an increase in these parameters cannot be easily compensated for by an increase in the size of the receiving buffer. Generally, in most cases when there is a variation in outage parameters, an increased buffer size has a negative impact on the freeze probability. To lower the probability of freeze during video playback over a weak mobile link, it is better to sacrifice resolution just to keep the video content playing. Similarly, shifting focus from off to on times brings better results than increasing buffer size.
6

Incorporating Uncertainty with Transportation Point Forecasts: Applications to Roadway Network and Transit Passenger Origin-Destination Flow Models

Bicici, Serkan 28 August 2019 (has links)
No description available.
7

A Numerical Study of Multi-class Traffic Flow Models

CHEN, YIDI 30 September 2020 (has links)
No description available.
8

Estudo da distribuição do tempo de residência em um processo de pasteurização assistido por micro-ondas. / Study of the residence time distribution in a pasteurization process assisted by microwaves.

Fortes, Nilo Henrique Meira 22 August 2018 (has links)
O processo de pasteurização tem como objetivo garantir a segurança e qualidade nutricional do alimento e aumentar sua vida de prateleira. O conhecimento da distribuição do tempo de residência (DTR) do alimento em cada etapa do processo contínuo é importante para uma avaliação adequada do processo e das alterações que causa no alimento. Este trabalho tem como objetivo estudar a DTR em um processo de pasteurização contínuo assistido por micro-ondas aplicado a alimentos líquidos e propor modelos de escoamento para representá-la. Para isso, foram realizados experimentos de estímulo-resposta com alimentação tipo pulso por técnica condutimétrica utilizando uma solução saturada de NaCl como traçador. Com isso, foram obtidas as curvas de DTR do sistema completo, dos trocadores de calor das seções de pré-aquecimento e resfriamento, de seis tubos de retenção com diferentes diâmetros e comprimentos (volumes entre 40 e 125 mL) e do sistema de aquisição de dados de condutividade elétrica. Os experimentos foram realizados em quatro vazões volumétricas (0,5, 0,7, 0,9 e 1,1 L/min), a temperatura ambiente (19 a 26 °C) e como fluido de trabalho foi utilizada uma corrente de alimentação de água com concentração 0,5 g/L de NaCl para estabilizar a leitura de condutividade elétrica. Foram realizadas três repetições por vazão para o processo completo, trocadores de calor e tubos de retenção, e cinco repetições por vazão para o sistema de aquisição de dados, dada a maior sensibilidade. Observou-se a necessidade de realizar o procedimento de convolução numérica para avaliar a distorção na curva de DTR do processo causada pelo escoamento na célula do sistema de aquisição de dados. Foram testados cinco modelos de escoamento: dispersão axial, compartimentado PFR+CSTR, tanques em série, convecção generalizada e y-laminar. O critério de ajuste dos modelos foi a minimização do erro quadrático entre valores experimentais e calculados da curva E(t). Os modelos de dispersão axial e y-laminar foram o que apresentaram melhor ajuste para os tubos de retenção e o modelo de convecção generalizada apresentou melhor ajuste para os trocadores de calor. O regime de escoamento durante os experimentos variou entre laminar e de transição (valores de Reynolds entre 1259 e 4238). Os resultados para o sistema completo e trocadores de calor foram satisfatórios, para os tubos de retenção foi observada uma grande incerteza nos valores dos parâmetros e foi observada a importância da convolução numérica em sistemas de pequeno volume. / Pasteurization process aims to ensure the safety and nutritional quality of the food and increase its shelf life. The knowledge of residence time distribution (RTD) of the food in each step of continuous processes is important to evaluate the process and changes that it causes in foods. This work aims to study the RTD in a continuous pasteurization process assisted by microwave applied to liquid foods and propose flow models to represent it. For this reason, stimulus-response experiments by pulse injection were conducted by conductimetric technique using a saturated solution of NaCl as a tracer. Thus, it was obtained the RTD of the complete process, heat exchangers of preheating section and cooling section, six retention tubes with different diameters and lengths (volumes between 40 and 125 mL) and of the electrical conductivity data acquisition system. The experiments were carried out at four volumetric flow rates (0.5, 0.7, 0.9 and 1.1 L/min), at room temperature (19 to 26 °C) and water with 0.5 g/L of NaCl was used as the work fluid to stabilize the electrical conductivity reading. Three repetitions per volumetric flow rate were performed for the complete process, heat exchangers and holding tubes, and five repetitions per volumetric flow rate were performed for the data acquisition system, given the higher sensibility. It was observed the need to apply the numerical convolution procedure to evaluate the distortion in the RTD curve of the process caused by the flow through the data acquisition system. Five flow models were tested: axial dispersion, PFR+CSTR association, tanks in series, generalized convection and y-laminar. The adjustment criterion of the parameters was the minimization of the quadratic error between experimental and calculated E(t) values. The axial dispersion and y-laminar models provided the best adjustments for the holding tubes and the generalized convection model provided the best adjustment for the heat exchangers. The flow regime during the experiments varied between laminar and transition (Reynolds values between 1259 and 4238). The results for the complete system and heat exchangers were satisfactory, for the holding tubes was observed a great uncertainty in the parameters values and was observed the importance of numerical convolution in small volume systems.
9

Network Flow Models for Designing Diameter-Constrained Minimum Spanning and Steiner Trees

Gouveia, Luis, Magnanti, Thomas L. 08 1900 (has links)
The Diameter-Constrained Minimum Spanning Tree Problem seeks a least cost spanning tree subject to a (diameter) bound imposed on the number of edges in the tree between any node pair. A traditional multicommodity flow model with a commodity for every pair of nodes was unable to solve a 20-node and 100-edge problem after one week of computation. We formulate the problem as a directed tree from a selected central node or a selected central edge. Our model simultaneously finds a central node or a central edge and uses it as the source for the commodities in a directed multicommodity flow model with hop constraints. The new model has been able to solve the 20-node, 100-edge instance to optimality after less than four seconds. We also present model enhancements when the diameter bound is odd (these situations are more difficult). We show that the linear programming relaxation of the best formulations discussed in this paper always give an optimal integer solution for two special, polynomially-solvable cases of the problem. We also examine the Diameter Constrained Minimum Steiner Tree problem. We present computational experience in solving problem instances with up to 100 nodes and 1000 edges. The largest model contains more than 250,000 integer variables and more than 125,000 constraints.
10

Performance and uncertainty estimation of 1- and 2-dimensional flood models

Lim, Nancy Joy January 2011 (has links)
Performance-based measures are used to validate and quantify how likely the system’s results resemble that of the actual data. Its application in inundation studies is performed by comparing the extents of the predicted flood to the real event by measuring their overlap size and getting the percentage of this size to the union of both data. In this study, performances of 1- and 2-dimensional flow models were assessed when used with different topographic data sources, rasterisation cell sizes, mesh resolution and Manning’s values with the help of Geographic Information Systems (GIS). The Generalised Likelihood Uncertainty Estimation (GLUE) was also implemented to evaluate the behaviour and the uncertainties of the Hydrologic Engineering Center-River Analysis System (HEC-RAS) steady-flow model in delineating the inundation extents when various sets of friction coefficients for floodplain and channel were utilised as inputs. Although it was not possible to perform the GLUE procedure with Telemac-2D due to the simulation time, Manning’s n performances’ effects were evaluated using ten randomly selected sets of friction for the channel and floodplain. The LiDAR data, which had the highest resolution, performed well in all simulations, followed by Lantmäteriet data at 50 m resolution. The lowest resolution Digital Terrain Elevation Data (DTED) showed poor resemblance to the actual event and big misrepresentations of flooded areas. Rasterisation cell sizes in HEC-RAS showed minimal effect to the inundation limits when used between 1 m and 5 m, but performance started to deteriorate at 10 m (Lantmäteriet) and 20 m (LiDAR). The 10 m mesh resolution used for LiDAR behaved poorer than the 20 m mesh, which performed well in the different 2D simulations. For HEC-RAS, =0.033 to 0.05 performed well when paired with =0.02 to 0.10. It was apparent, therefore, that the channel’s Manning’s n affected the performances of the floodplain’s . Furthermore, the study also showed that using heterogeneous roughness values corresponding to the different land use classes is not as effective as using single channel and floodplain’s Manning. The dependence of the floodplain’s roughness to the channel’s friction values had also been manifested by Telemac, even though it required lower values than the 1D simulator. = 0.007 to 0.019   and =0.01 to 0.04 gave good performance to the 2D system. In terms of the overall model performance, HEC-RAS 1D exhibited good results for Testeboån. Even when the average distances to the actual data were estimated, the breadths were shorter compared to the most optimal output of the two-dimensional simulator, which showed more overestimated areas, despite the fact that the overlap size with the 1977 actual event was better than HEC-RAS. It could be because the measures-of-fit took into consideration the areal sizes that were over- and under-predicted aside from the overlap sizes between the observed and modelled results. This could be the same reason with the mean distances produced, wherein higher values were computed for Telemac-2D due to its bigger gap from the actual flood as brought by the enlargement in the flood extents. But it was also made known in the study that such ambiguities in the model performance were further contributed by the characteristics of the floodplain’s topography of being flat. Testeboån’s inclination to the banks was averaged at 0.027 m/m, with the central portion at 0.002 m/m. The middle portion of the floodplain was illustrated to contain more uncertain regions, where water extents changed easily as the parameters were altered. Distances greater than 200 m were also mostly located within these inclination values or within 0.005 to 0.006 m/m. The response of distance to the floodplain’s gradient improved when the slope value became higher, and this had been particularly noticed between 0 to 50 m.

Page generated in 0.0598 seconds