• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topographic data and roughness parameterisation effects on 1D flood inundation models

Lim, Nancy Joy January 2009 (has links)
<p>A big responsibility lies in the hand of local authorities to exercise measures in preventing fatalities and damages during flood occurrences. However, the problem is how flooding can be prevented if nobody knows when and where it will be occurring, and how much water is expected. Therefore, the utilisation of flood models in such studies can be helpful in simulating what is anticipated to occur.</p><p> </p><p>In this study, the HEC-RAS steady flow model was used in calibrating different flood events in Testeboån river, which is situated in the municipality of Gävle in Sweden. The purpose is to provide inundation maps that show the water surface profiles for the various flood events that can help authorities in planning within the area. Moreover, the study would try to address certain issues, which concern one-dimensional models like HEC-RAS in terms of the effects of topographic data and the parameters used for friction coefficient.</p><p> </p><p>Various flood maps were produced to visualise the extents of the floods. In Oppala and Norra Åbyggeby, the big water extents for both the 100-year and the highest probable floods were visible in the forested areas and grasslands, although a few houses were within the predicted flooded areas. In Södra Åbyggeby, Varva, Forsby, and in the northern parts of Strömsbro and Stigslund, the majority of the residential places were not inundated during the 100-year flood calibration, but became flooded during the maximum probable flood. The southern portions of Strömsbro and Stigslund had lesser flood extents and houses were situated within the boundaries of the highest flood. In Näringen, there were also some areas close to the estuary that were flooded for both events.</p><p> </p><p>With the other calibrations performed, two factors that greatly affect the flood extents in the floodplain, particularly in flatter areas were topographic data and the parameters used as friction coefficient.  The use of high resolution topographic data was important in improving the performance of the software. Nevertheless, it must be emphasised that in areas characterised by gentler slopes that bounded the channel and the floodplain, data completeness became significant whereby both ground data and bathymetric points must be present to avoid overestimation of the inundation extent. The water extents also varied with the use of the various Manning’s <em>n</em> for the overbanks, with the bigger value showing greater water extents. Else, in areas with steeper slopes and where the water was confined to the banks, the effect was minimal.</p><p> </p><p>Despite these shortcomings of one-dimensional models, HEC-RAS provided good inundation extents that were comparable to the actual extent of the 1977 flooding.</p><p> </p><p>Modelling real floods has its own difficulties due to the unpredictability of real-life flood behaviours, and more especially, there are time dependent factors that are involved.  Although calibrating a flood event will not exactly determine what is to arise as they might either under- or overestimate such flooding occurrences, still, they give a standpoint of what is more or less to anticipate, and from this,  planning measures can be undertaken.</p>
2

Performance and uncertainty estimation of 1- and 2-dimensional flood models

Lim, Nancy Joy January 2011 (has links)
Performance-based measures are used to validate and quantify how likely the system’s results resemble that of the actual data. Its application in inundation studies is performed by comparing the extents of the predicted flood to the real event by measuring their overlap size and getting the percentage of this size to the union of both data. In this study, performances of 1- and 2-dimensional flow models were assessed when used with different topographic data sources, rasterisation cell sizes, mesh resolution and Manning’s values with the help of Geographic Information Systems (GIS). The Generalised Likelihood Uncertainty Estimation (GLUE) was also implemented to evaluate the behaviour and the uncertainties of the Hydrologic Engineering Center-River Analysis System (HEC-RAS) steady-flow model in delineating the inundation extents when various sets of friction coefficients for floodplain and channel were utilised as inputs. Although it was not possible to perform the GLUE procedure with Telemac-2D due to the simulation time, Manning’s n performances’ effects were evaluated using ten randomly selected sets of friction for the channel and floodplain. The LiDAR data, which had the highest resolution, performed well in all simulations, followed by Lantmäteriet data at 50 m resolution. The lowest resolution Digital Terrain Elevation Data (DTED) showed poor resemblance to the actual event and big misrepresentations of flooded areas. Rasterisation cell sizes in HEC-RAS showed minimal effect to the inundation limits when used between 1 m and 5 m, but performance started to deteriorate at 10 m (Lantmäteriet) and 20 m (LiDAR). The 10 m mesh resolution used for LiDAR behaved poorer than the 20 m mesh, which performed well in the different 2D simulations. For HEC-RAS, =0.033 to 0.05 performed well when paired with =0.02 to 0.10. It was apparent, therefore, that the channel’s Manning’s n affected the performances of the floodplain’s . Furthermore, the study also showed that using heterogeneous roughness values corresponding to the different land use classes is not as effective as using single channel and floodplain’s Manning. The dependence of the floodplain’s roughness to the channel’s friction values had also been manifested by Telemac, even though it required lower values than the 1D simulator. = 0.007 to 0.019   and =0.01 to 0.04 gave good performance to the 2D system. In terms of the overall model performance, HEC-RAS 1D exhibited good results for Testeboån. Even when the average distances to the actual data were estimated, the breadths were shorter compared to the most optimal output of the two-dimensional simulator, which showed more overestimated areas, despite the fact that the overlap size with the 1977 actual event was better than HEC-RAS. It could be because the measures-of-fit took into consideration the areal sizes that were over- and under-predicted aside from the overlap sizes between the observed and modelled results. This could be the same reason with the mean distances produced, wherein higher values were computed for Telemac-2D due to its bigger gap from the actual flood as brought by the enlargement in the flood extents. But it was also made known in the study that such ambiguities in the model performance were further contributed by the characteristics of the floodplain’s topography of being flat. Testeboån’s inclination to the banks was averaged at 0.027 m/m, with the central portion at 0.002 m/m. The middle portion of the floodplain was illustrated to contain more uncertain regions, where water extents changed easily as the parameters were altered. Distances greater than 200 m were also mostly located within these inclination values or within 0.005 to 0.006 m/m. The response of distance to the floodplain’s gradient improved when the slope value became higher, and this had been particularly noticed between 0 to 50 m.
3

Topographic data and roughness parameterisation effects on 1D flood inundation models

Lim, Nancy Joy January 2009 (has links)
A big responsibility lies in the hand of local authorities to exercise measures in preventing fatalities and damages during flood occurrences. However, the problem is how flooding can be prevented if nobody knows when and where it will be occurring, and how much water is expected. Therefore, the utilisation of flood models in such studies can be helpful in simulating what is anticipated to occur.   In this study, the HEC-RAS steady flow model was used in calibrating different flood events in Testeboån river, which is situated in the municipality of Gävle in Sweden. The purpose is to provide inundation maps that show the water surface profiles for the various flood events that can help authorities in planning within the area. Moreover, the study would try to address certain issues, which concern one-dimensional models like HEC-RAS in terms of the effects of topographic data and the parameters used for friction coefficient.   Various flood maps were produced to visualise the extents of the floods. In Oppala and Norra Åbyggeby, the big water extents for both the 100-year and the highest probable floods were visible in the forested areas and grasslands, although a few houses were within the predicted flooded areas. In Södra Åbyggeby, Varva, Forsby, and in the northern parts of Strömsbro and Stigslund, the majority of the residential places were not inundated during the 100-year flood calibration, but became flooded during the maximum probable flood. The southern portions of Strömsbro and Stigslund had lesser flood extents and houses were situated within the boundaries of the highest flood. In Näringen, there were also some areas close to the estuary that were flooded for both events.   With the other calibrations performed, two factors that greatly affect the flood extents in the floodplain, particularly in flatter areas were topographic data and the parameters used as friction coefficient.  The use of high resolution topographic data was important in improving the performance of the software. Nevertheless, it must be emphasised that in areas characterised by gentler slopes that bounded the channel and the floodplain, data completeness became significant whereby both ground data and bathymetric points must be present to avoid overestimation of the inundation extent. The water extents also varied with the use of the various Manning’s n for the overbanks, with the bigger value showing greater water extents. Else, in areas with steeper slopes and where the water was confined to the banks, the effect was minimal.   Despite these shortcomings of one-dimensional models, HEC-RAS provided good inundation extents that were comparable to the actual extent of the 1977 flooding.   Modelling real floods has its own difficulties due to the unpredictability of real-life flood behaviours, and more especially, there are time dependent factors that are involved.  Although calibrating a flood event will not exactly determine what is to arise as they might either under- or overestimate such flooding occurrences, still, they give a standpoint of what is more or less to anticipate, and from this,  planning measures can be undertaken.

Page generated in 0.6219 seconds