• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The regulation of intestinal bicarbonate secretion by marine teleost fish

Whittamore, Jonathan Mark January 2008 (has links)
In seawater, drinking is a fundamental part of the osmoregulatory strategy for teleost fish, and presents a unique challenge. The intestine has an established role in osmoregulation, and its ability to effectively absorb fluid from imbibed seawater is crucial to compensating for water losses to the surrounding hyperosmotic environment. Alongside solute-linked water transport (driven by NaCl cotransport), intestinal bicarbonate (HCO3-) secretion also benefits fluid absorption directly (via apical Cl-/HCO3- exchange), and indirectly through the formation of calcium carbonate (CaCO3) thus removing the osmotic influence of Ca2+ within the gut fluid. For the European flounder (Platichthys flesus), elevated luminal Ca2+ has proven to be a specific, potent stimulator of HCO3- secretion both in vitro and in vivo where these actions are presumably modulated by an extracellular Ca2+-sensing receptor (CaR). The focus of this work was to learn more about how intestinal HCO3- secretion is regulated, the role of Ca2+, and more specifically the CaR. To achieve this, in vitro ‘gut sac’ experiments investigated how luminal Ca2+ influenced HCO3- secretion, and associated ion and fluid transport. Contrary to expectation, increasing Ca2+ from 5 to 20 mM did not stimulate HCO3- secretion. In an attempt to elucidate the role of CaCO3 precipitation in fluid absorption, and further explore the physiological implications of HCO3- secretion, the intestine was perfused in vivo with salines containing varying concentrations of Ca2+ (10, 40 and 90 mM). The production and secretion of HCO3-, in addition to CaCO3 formation increased accordingly with Ca2+, and was associated with a dramatic 25 % rise in the fraction of fluid absorbed by the gut. Additional in vitro experiments, utilising the Ussing chamber, helped establish some of the characteristics of intestinal HCO3- secretion by the euryhaline killifish (Fundulus heteroclitus), but was unresponsive to elevated mucosal Ca2+. Further attempts to potentiate the activity of the CaR, and application of the receptor agonists gadolinium (Gd3+) and neomycin, failed to produce responses consistent with the effect of Ca2+ observed previously, either in vitro or in vivo. With no evidence supporting a direct role for an extracellular, intestinal CaR in HCO3- secretion it was argued that secretion would be principally regulated by two factors, the ability of the epithelia to generate high levels of intracellular HCO3- and the rate of CaCO3 formation.
12

The Role of Protein Kinase C in the Extracellular Ca<sup>2+</sup>-regulated Secretion of Parathyroid Hormone

Sakwe, Amos M. January 2004 (has links)
<p>Parathyroid hormone (PTH) is the major physiological regulator of the extracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>o</sub>) in the body. The secretion of this hormone is suppressed at high [Ca<sup>2+</sup>]<sub>o</sub>. Previously this was thought to occur by intracellular degradation of the hormone in the secretory pathway of parathyroid (PT) cells but is now believed to result from extracellular Ca<sup>2+</sup> stimulus-secretion coupling via the calcium sensing receptor (CaR). In contrast to the stimulation of PTH secretion upon inhibition of mature PTH proteolysis, inhibition of PT proteasomes caused the accumulation of PTH precursors and inhibited secretion of PTH. This suggests that PT proteasomes play a quality control function in the maturation of PTH but they do not directly participate in the [Ca<sup>2+</sup>]<sub>o</sub>-regulated secretion of the hormone. Treatment of PT cells with 12-O-tetradecanyolphorbol-13-acetate (TPA) blocks the high [Ca<sup>2+</sup>]<sub>o</sub>-induced CaR-mediated suppression of PTH secretion. To delineate the role of DAG-responsive protein kinase C (PKC) isoforms in this process, we complemented pharmacological modulation of PKC activity with physiological activation of the enzyme via the CaR. PKC-α was rapidly activated by high [Ca<sup>2+</sup>]<sub>o</sub> and was efficiently down-regulated by prolonged TPA treatment. In CaR-transfected HEK293 cells, TPA and high [Ca<sup>2+</sup>]<sub>o</sub> induced the activation of ERK1/2 but the TPA effect was CaR- and Ca<sup>2+</sup>-independent. The magnitude of neomycin-induced release of Ca<sup>2+</sup> from intracellular stores following pharmacological modulation of PKC activity was opposite to that resulting from physiological activation/inhibition of the enzyme via the CaR. Influx of Ca<sup>2+</sup> following activation of the receptor occurred by store-operated mechanisms. Over-expression of wt or DN PKC-α or-ε in PT cells using the Tet-On adenovirus gene delivery system revealed that the stimulatory effect of TPA on PTH secretion at high [Ca<sup>2+</sup>]<sub>o</sub> was enhanced in cells over-expressing wt PKC-α, but the coupling of the extracellular Ca<sup>2+</sup> signal to PTH secretion was not dependent on the physiological activation of this PKC isoform via the CaR.</p>
13

The Role of Protein Kinase C in the Extracellular Ca2+-regulated Secretion of Parathyroid Hormone

Sakwe, Amos M. January 2004 (has links)
Parathyroid hormone (PTH) is the major physiological regulator of the extracellular Ca2+ concentration ([Ca2+]o) in the body. The secretion of this hormone is suppressed at high [Ca2+]o. Previously this was thought to occur by intracellular degradation of the hormone in the secretory pathway of parathyroid (PT) cells but is now believed to result from extracellular Ca2+ stimulus-secretion coupling via the calcium sensing receptor (CaR). In contrast to the stimulation of PTH secretion upon inhibition of mature PTH proteolysis, inhibition of PT proteasomes caused the accumulation of PTH precursors and inhibited secretion of PTH. This suggests that PT proteasomes play a quality control function in the maturation of PTH but they do not directly participate in the [Ca2+]o-regulated secretion of the hormone. Treatment of PT cells with 12-O-tetradecanyolphorbol-13-acetate (TPA) blocks the high [Ca2+]o-induced CaR-mediated suppression of PTH secretion. To delineate the role of DAG-responsive protein kinase C (PKC) isoforms in this process, we complemented pharmacological modulation of PKC activity with physiological activation of the enzyme via the CaR. PKC-α was rapidly activated by high [Ca2+]o and was efficiently down-regulated by prolonged TPA treatment. In CaR-transfected HEK293 cells, TPA and high [Ca2+]o induced the activation of ERK1/2 but the TPA effect was CaR- and Ca2+-independent. The magnitude of neomycin-induced release of Ca2+ from intracellular stores following pharmacological modulation of PKC activity was opposite to that resulting from physiological activation/inhibition of the enzyme via the CaR. Influx of Ca2+ following activation of the receptor occurred by store-operated mechanisms. Over-expression of wt or DN PKC-α or-ε in PT cells using the Tet-On adenovirus gene delivery system revealed that the stimulatory effect of TPA on PTH secretion at high [Ca2+]o was enhanced in cells over-expressing wt PKC-α, but the coupling of the extracellular Ca2+ signal to PTH secretion was not dependent on the physiological activation of this PKC isoform via the CaR.
14

Proteins associated with the intracellular signalling tail of the calcium-sensing receptor and their impact on receptor function

Magno, Aaron January 2009 (has links)
[Truncated abstract] The calcium-sensing receptor (CaR) is a G protein-coupled receptor that can respond to changes in extracellular calcium and plays an integral role in calcium homeostasis. Later studies revealed that the CaR was stimulated by not just calcium, but a diverse range of stimuli and that activation of the receptor regulated a host of different biological processes. The CaR is linked to these cellular responses via the various signalling pathways initiated by the receptor. Recent yeast two-hybrid studies have identified a number of accessory proteins that, through their interaction with the intracellular tail of the CaR, are able to regulate important functional aspects of the receptor, including its signalling and degradation. We hypothesised that many more proteins that bind to the CaR-tail await identification, especially since most of the previous studies used the yeast two-hybrid system to screen cDNA libraries generated from tissues that are important to whole body calcium homeostasis, such as the parathyroid gland and kidney. In order to identify novel binding partners of the CaR, which may affect its function, particularly in biological processes that might be unrelated to calcium homeostasis, our laboratory performed a yeast two-hybrid screen of an EMLC.1 mouse pluripotent haemopoietic cell line library using the intracellular tail of the human CaR as bait. This screen revealed a large number of
15

Estudo do gene do receptor sensor do cálcio (CASR) em pacientes com distúrbios do metabolismo do cálcio / Study of the calcium-sensing receptor gene (CASR) in patients with calcium metabolism disorders

Rodrigues, Luiza Souza 15 March 2013 (has links)
O receptor sensor do cálcio (CASR) desempenha um importante papel na manutenção da concentração plasmática do cálcio. Desde a sua descrição, mais de 200 mutações foram descritas podendo levar à perda ou ao ganho de função, resultando em situações de hiper ou hipocalcemia, respectivamente. Mutações inativadoras estão associadas à hipercalcemia hipocalciúrica familiar (HHF) e ao hiperparatireoidismo neonatal grave (HPTNG), enquanto que mutações ativadoras estão associadas à hipocalcemia autossômica dominante (HAD) e à Síndrome de Bartter tipo V. O objetivo deste estudo foi realizar o diagnóstico molecular, por meio da análise do gene CASR, em pacientes com HPTNG, HHF, hipocalcemia com PTH inapropriadamente normal ou baixo e hipoparatireoidismo idiopático com hipercalciúria na vigência de tratamento. Para cada criança (n = 2) com diagnóstico clínico e laboratorial de HPTNG, uma mutação \"nonsense\" em homozigose foi identificada na região codificadora do CASR (p.E519X e p.R544X). O estudo molecular dos pais das crianças mostrou tratar-se de casos herdados caracterizando-os como indivíduos com HHF e possibilitou o aconselhamento genético para estas famílias. Mutações pontuais em heterozigose na região codificadora do CASR (p.R25X, p.R69H, p.T627I) foram detectadas em três dos quatro pacientes selecionados com diagnóstico inicial de hiperparatireoidismo primário e bioquímica compatível com hipercalcemia hipocalciúrica. Estes achados constituem a base molecular da HHF e permitiram o rastreamento de outros casos de HHF nas respectivas famílias com impacto na abordagem terapêutica dos mesmos. Na paciente em que não foi detectada nenhuma mutação na região codificadora do CASR, o estudo prosseguiu com a pesquisa de alterações no número de cópias gênicas e de mutações nas regiões promotoras P1 e P2 como possíveis causas do fenótipo em questão. O resultado destas abordagens foi normal. Dos quatro pacientes selecionados com quadro de hipoparatireoidismo idiopático e hipercalciúria na vigência de tratamento, em apenas uma, a causa molecular foi definida por mutação \"missense\" em heterozigose na região codificadora do CASR (p.E767K) repercutindo positivamente no seu tratamento. Nos demais casos (n = 3), a pesquisa de alterações no número de cópias gênicas e de mutações nas regiões promotoras P1 e P2 também resultou normal. / The calcium sensing receptor (CASR) plays an important role in maintaining the plasma concentration of calcium. From its first description, more than 200 mutations have been described leading to loss or gain of function, resulting in conditions of either hyper or hypocalcemia, respectively. Inactivating mutations are associated with familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT), whereas activating mutations are associated with autosomal dominant hypocalcemia (ADH) and type V Bartter\'s syndrome. The aim of this study was to perform the molecular diagnosis, by analyzing the CASR gene, in patients with NSHPT, FHH, hypocalcemia with inappropriately normal or low PTH and idiopathic hypoparathyroidism with hypercalciuria during treatment. In every child (n = 2) with clinical and laboratory diagnosis of NSHPT, a nonsense mutation in homozygosity was identified in the coding region of the CASR (p.E519X and p.R544X). The molecular analysis of the child\'s parents showed that they were inherited cases qualifying them as individuals with FHH and it enabled a genetic counseling for these families. Point mutations in heterozygosity in the coding region of the CASR (p.R25X, p.R69H, p.T627I) have been detected in three out of the four selected patients with an initial diagnosis of primary hyperparathyroidism and biochemistry compatible with hypocalciuric hipercalcemia. These findings are the molecular basis of FHH and allowed the screening of other FHH cases in these families impacting on their therapeutic approach. In patients where no mutation in the coding region of the CASR was detected, the study went on researching for changes in the number of gene copies and mutations in P1 and P2 promoter regions as possible causes to the phenotype in question. The result of these approaches has been normal. The molecular cause has been defined as missense mutation in heterozygosis in the coding region of the CASR (p.E767K) in only one out of the four selected patients with idiopathic hypoparathyroidism and hypercalciuria during treatment, with a positive impact on her treatment. In the other cases (n = 3), the search for changes in the number of gene copies and mutations in the P1 and P2 promoter regions was normal.
16

Estudo do gene do receptor sensor do cálcio (CASR) em pacientes com distúrbios do metabolismo do cálcio / Study of the calcium-sensing receptor gene (CASR) in patients with calcium metabolism disorders

Luiza Souza Rodrigues 15 March 2013 (has links)
O receptor sensor do cálcio (CASR) desempenha um importante papel na manutenção da concentração plasmática do cálcio. Desde a sua descrição, mais de 200 mutações foram descritas podendo levar à perda ou ao ganho de função, resultando em situações de hiper ou hipocalcemia, respectivamente. Mutações inativadoras estão associadas à hipercalcemia hipocalciúrica familiar (HHF) e ao hiperparatireoidismo neonatal grave (HPTNG), enquanto que mutações ativadoras estão associadas à hipocalcemia autossômica dominante (HAD) e à Síndrome de Bartter tipo V. O objetivo deste estudo foi realizar o diagnóstico molecular, por meio da análise do gene CASR, em pacientes com HPTNG, HHF, hipocalcemia com PTH inapropriadamente normal ou baixo e hipoparatireoidismo idiopático com hipercalciúria na vigência de tratamento. Para cada criança (n = 2) com diagnóstico clínico e laboratorial de HPTNG, uma mutação \"nonsense\" em homozigose foi identificada na região codificadora do CASR (p.E519X e p.R544X). O estudo molecular dos pais das crianças mostrou tratar-se de casos herdados caracterizando-os como indivíduos com HHF e possibilitou o aconselhamento genético para estas famílias. Mutações pontuais em heterozigose na região codificadora do CASR (p.R25X, p.R69H, p.T627I) foram detectadas em três dos quatro pacientes selecionados com diagnóstico inicial de hiperparatireoidismo primário e bioquímica compatível com hipercalcemia hipocalciúrica. Estes achados constituem a base molecular da HHF e permitiram o rastreamento de outros casos de HHF nas respectivas famílias com impacto na abordagem terapêutica dos mesmos. Na paciente em que não foi detectada nenhuma mutação na região codificadora do CASR, o estudo prosseguiu com a pesquisa de alterações no número de cópias gênicas e de mutações nas regiões promotoras P1 e P2 como possíveis causas do fenótipo em questão. O resultado destas abordagens foi normal. Dos quatro pacientes selecionados com quadro de hipoparatireoidismo idiopático e hipercalciúria na vigência de tratamento, em apenas uma, a causa molecular foi definida por mutação \"missense\" em heterozigose na região codificadora do CASR (p.E767K) repercutindo positivamente no seu tratamento. Nos demais casos (n = 3), a pesquisa de alterações no número de cópias gênicas e de mutações nas regiões promotoras P1 e P2 também resultou normal. / The calcium sensing receptor (CASR) plays an important role in maintaining the plasma concentration of calcium. From its first description, more than 200 mutations have been described leading to loss or gain of function, resulting in conditions of either hyper or hypocalcemia, respectively. Inactivating mutations are associated with familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT), whereas activating mutations are associated with autosomal dominant hypocalcemia (ADH) and type V Bartter\'s syndrome. The aim of this study was to perform the molecular diagnosis, by analyzing the CASR gene, in patients with NSHPT, FHH, hypocalcemia with inappropriately normal or low PTH and idiopathic hypoparathyroidism with hypercalciuria during treatment. In every child (n = 2) with clinical and laboratory diagnosis of NSHPT, a nonsense mutation in homozygosity was identified in the coding region of the CASR (p.E519X and p.R544X). The molecular analysis of the child\'s parents showed that they were inherited cases qualifying them as individuals with FHH and it enabled a genetic counseling for these families. Point mutations in heterozygosity in the coding region of the CASR (p.R25X, p.R69H, p.T627I) have been detected in three out of the four selected patients with an initial diagnosis of primary hyperparathyroidism and biochemistry compatible with hypocalciuric hipercalcemia. These findings are the molecular basis of FHH and allowed the screening of other FHH cases in these families impacting on their therapeutic approach. In patients where no mutation in the coding region of the CASR was detected, the study went on researching for changes in the number of gene copies and mutations in P1 and P2 promoter regions as possible causes to the phenotype in question. The result of these approaches has been normal. The molecular cause has been defined as missense mutation in heterozygosis in the coding region of the CASR (p.E767K) in only one out of the four selected patients with idiopathic hypoparathyroidism and hypercalciuria during treatment, with a positive impact on her treatment. In the other cases (n = 3), the search for changes in the number of gene copies and mutations in the P1 and P2 promoter regions was normal.

Page generated in 0.1003 seconds