Spelling suggestions: "subject:"calcul stochastique via régulation"" "subject:"oalcul stochastique via régulation""
1 |
Calcul stochastique via régularisation en dimension infinie avec perspectives financièresDi Girolami, Cristina 05 July 2010 (has links) (PDF)
Ce document de thèse développe certains aspects du calcul stochastique via régularisation pour des processus X à valeurs dans un espace de Banach général B. Il introduit un concept original de Chi-variation quadratique, où Chi est un sous-espace du dual d'un produit tensioriel B⊗B, muni de la topologie projective. Une attention particulière est dévouée au cas où B est l'espace des fonctions continues sur [-τ,0], τ>0. Une classe de résultats de stabilité de classe C^1 pour des processus ayant une Chi-variation quadratique est établie ainsi que des formules d'Itô pour de tels processus. Un rôle significatif est joué par les processus réels à variation quadratique finie X (par exemple un processus de Dirichlet, faible Dirichlet). Le processus naturel à valeurs dans C[-τ,0] est le dénommé processus fenêtre X_t(•) où X_t(y) = X_{t+y}, y ∈ [-τ,0]. Soit T>0. Si X est un processus dont la variation quadratique vaut [X]_t = t et h = H(X_T(•)) où H:C([-T,0])→ R est une fonction de classe C^3 Fréchet par rapport à L^2([-T,0] ou H dépend d'un numéro fini d' intégrales de Wiener, il est possible de représenter h comme un nombre réel H_0 plus une intégrale progressive du type \int_0^T \xi d^-X où \xi est un processus donné explicitement. Ce résultat de répresentation de la variable aléatoire h sera lié strictement à une fonction u:[0,T] x C([-T,0])→R qui en général est une solution d'une equation au derivées partielles en dimension infinie ayant la proprieté H_0=u(0, X_0(•)), \xi_t=Du(t, X_t(•))({0}). A certains égards, ceci généralise la formule de Clark-Ocone valable lorsque X est un mouvement brownien standard W. Une des motivations vient de la théorie de la couverture d'options lorsque le prix de l'actif soujacent n'est pas une semimartingale.
|
Page generated in 0.4324 seconds