• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Air Pollution Distribution under an Elevated Train Station (A Case Study of Silom Station in Downtown Bangkok)

Charusombat, Umarporn 01 January 1999 (has links)
To solve traffic congestion in Bangkok, the Bangkok Mass Transit system (BTS) constructed an overhead rail system with 24 stations. The BTS train station, S2, in this study area covers Silom road and obstructs the air pollutant dispersion in a congestion area. The 1: 200 physical model of the buildings along Silom road with the train station, S2, was simulated in this research to determine the air pollutant dispersion in the train station area. A tracer gas (CO₂) was emitted from a simulated line source with emission rates of 0.383, 0.681, 1.293, 2.586, 5.177 and 10.77 mg/min to simulate actual pollutant emission rates. The CO₂ gas was sampled at 55 locations in the model. The Kriging method was used to interpolate the data in the study area. . Emission rates were used to make the difference between measured CO₂ in the model area and ambient CO₂ large enough to be differentiated. Regression Analysis was used to relate analytically the mass emission rate to the CO₂ concentration. The results indicate that the maximum CO concentrations exceed the 30 ppm Bangkok standard along the Southeast side of Silom Road at the passenger platform level. Drivers will acquire more harmful levels of CO than pedestrians at street level, especially near the Southwest end of the train station. NO₂ concentrations do not exceed the standard (0.17 ppm) at street level. The highest predicted VOC is 1.05 ppm. These results may be used in the future for numerical modeling study. / Master of Science

Page generated in 0.0974 seconds