• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Impact Model for the Industrial Cam-follower System: Simulation and Experiment

Paradorn, Vasin 28 November 2007 (has links)
"Automatic assembly machines have many cam-driven linkages that provide motion to tooling. Newer machines are typically designed to operate at higher speeds and may need to handle products with small and delicate features that must be assembled precisely every time. In order to design a good tooling mechanism linkage, the dynamic behavior of the components must be considered; this includes both the gross kinematic motion and self-induced vibration motion. Current simulations of cam-follower system dynamics correlate poorly to the actual dynamic behavior because they ignore two events common in these machines: impact and over-travel. A new dynamic model was developed with these events. From this model, an insight into proper design of systems with deliberate impact was developed through computer modeling. To attain more precise representations of these automatic assembly machines, a simplified industrial cam-follower system model was constructed in SolidWorks CAD software. A two-mass, single-degree-of-freedom dynamic model was created in Simulink, a dynamic modeling tool, and validated by comparing to the model results from the cam design program, DYNACAM. After the model was validated, a controlled impact and over-travel mechanism was designed, manufactured, and assembled to a simplified industrial cam-follower system, the Cam Dynamic Test Machine (CDTM). Then, a new three-mass, two-degree-of-freedom dynamic model was created. Once the model was simulated, it was found that the magnitude and the frequency of the vibration, in acceleration comparison, of the dynamic model matched with the experimental results fairly well. The two maximum underestimation errors, which occurred where the two bodies collided, were found to be 119 m/s2 or 45% and 41 m/s2 or 30%. With the exception of these two impacts, the simulated results predicted the output with reasonable accuracy. At the same time, the maximum simulated impact force overestimated the maximum experimental impact force by 2 lbf or 1.3%. By using this three-mass, two-DOF impact model, machine design engineers will be able to simulate and predict the behavior of the assembly machines prior to manufacturing. If the results found through the model are determined to be unsatisfactory, modifications to the design can be made and the simulation rerun until an acceptable design is obtained."
2

An Investigation of Incipient Jump in Industrial Cam Follower Systems

Belliveau, Kenneth D 19 August 2002 (has links)
"The goal of this project was to investigate the dynamic effects of incipient separation of industrial cam-follower systems. Typical industrial cam-follower systems include a force closed cam joint and a follower train containing both substantial mass and stiffness. Providing the cam and follower remain in contact, this is a one degree-of-freedom (DOF) system. It becomes a two-DOF system once the cam and follower separate or jump, creating two new natural frequencies, which bracket the original. The dynamic performance of the system as it passed through the lower of the two post-separation modes while on the verge of jump was investigated. A study was conducted to determine whether imperfections in the cam surface, while the contact force is on the brink of incipient separation, may cause a spontaneous switch to the two-DOF mode and begin vibration at resonance. A force-closed translating cam-follower train was designed for the investigation. The fixture is a physical realization of the two-mass mathematical model. Pro/Engineer was used to design the follower train, Mathcad and TK Solver were used to analyze the linkage and DYNACAM & Mathcad were used to dynamically model the system. The system is designed to be on the cusp of incipient separation when run. Experiments were carried out by bringing the system up to jump speed and then backing off the preload to get the system on the cusp of separation. Data were collected at the prejump, slight jump, and violently jumping stages. The time traces show the acceleration amplitudes grow to large peaks when the system is jumping. The frequency spectrum shows the two new natural frequencies growing in amplitude from non-existant in the prejump stage, to higher values in the violently jumping stage. The peak amplitudes of the phenomenon are small in magnitude compared to the harmonic content of the cam. It is concluded that the contribution of the two-DOF system natural frequencies is not a significant factor from a practical aspect. Although the actual jump phenomenon is of concern in high-speed applications, calculations show that if the follower system is designed sufficiently stiff then the two-DOF situation will not occur."
3

A Novel Tension-Member Follower Train for a Generic Cam-Driven Mechanism

LaPierre, Jeffrey A 13 June 2008 (has links)
"Many assembly machines for consumer products suffer from the fact that the mechanisms used to impart the necessary assembly motions to the product are orders of magnitude more massive than the product payloads that they carry. This characteristic subsequently limits the operating speed of the machine. If the follower train could be made less massive without sacrificing accuracy and control, it would therefore allow higher speeds. It is well-known that structures that carry only tensile loads can be much less massive than those that must also carry compressive loads. This concept is demonstrated in many structures, such as the suspension bridge. This master’s project set out to investigate the feasibility of a tension-member follower train for a generic cam-driven pick and place mechanism. This system was first dynamically simulated using a computer model, and then tested by constructing a proof of concept prototype. A cam-driven, low-mass tension member (in this case a spring steel strip over pulleys) under spring preload was used to replace the bellcranks and connecting rods typical of a conventional follower train. The system was determined to be feasible and will allow for increased operating speeds at potentially lower costs as an additional benefit."
4

Impact damping and friction in non-linear mechanical systems with combined rolling-sliding contact

Sundar, Sriram 20 May 2014 (has links)
No description available.
5

The influence of carbonitriding on hardness, retained austenite and residual stress in 52100 steel

Malmberg, Andreas January 2015 (has links)
High rolling contact fatigue parts are vital for the long service life of fuel pumps. Cummins Fuel Systems are currently using an M2 tool steel for one of the most important roller bearing application in their pumps, namely the cam follower. The future design of the cam follower is a pin-less tappet roller. The wear and fatigue properties of the roller is vital to ensure reliability of the fuel system. M2 tool steel is an expensive material and becomes even more so if diamond like coating (DLC) is needed to decrease the friction coefficients. To cut costs of the fuel pump it might be possible to replace the M2 tool steel with 52100 steel (100Cr6). Competitive methods have proven that carbonitrided 52100 can reach excellent wear and fatigue properties making it a candidate to replace M2 tool steel. How the properties of hardness, toughness and compressive residual stresses are developed in 52100 and how they affect the fatigue and wear resistance has been researched from the literature. A big part of this project was to do an extensive analysis of a roller bearing that was believed to have gone through one of these competitive methods that produce excellent wear and fatigue resistance. The analysis was done with background to the knowledge gathered from the literature. Finally process trials were set up to carbonitride 52100 steel samples. The trials were done to develop a better understanding of how adding carbon together with nitrogen to the surface of 52100 steel will influence the metallurgical parameters that results in good wear and fatigue resistance. From this analysis Cummins hope to create a process recipe that can be used for carbonitriding the cam follower and maybe other components in their fuel systems.

Page generated in 0.0379 seconds