• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de texturas estáticas e dinâmicas e suas aplicações em biologia e nanotecnologia / Static and dynamic texture analysis and their applications in biology and nanotechnology

Gonçalves, Wesley Nunes 02 August 2013 (has links)
A análise de texturas tem atraído um crescente interesse em visão computacional devido a sua importância na caracterização de imagens. Basicamente, as pesquisas em texturas podem ser divididas em duas categorias: texturas estáticas e texturas dinâmicas. As texturas estáticas são caracterizadas por variações de intensidades que formam um determinado padrão repetido espacialmente na imagem. Por outro lado, as texturas dinâmicas são padrões de texturas presentes em uma sequência de imagens. Embora muitas pesquisas tenham sido realizadas, essa área ainda se encontra aberta a estudos, principalmente em texturas dinâmicas por se tratar de um assunto recente e pouco explorado. Este trabalho tem como objetivo o desenvolvimento de pesquisas que abrangem ambos os tipos de texturas nos âmbitos teórico e prático. Em texturas estáticas, foram propostos dois métodos: (i) baseado em caminhadas determinísticas parcialmente auto-repulsivas e dimensão fractal - (ii) baseado em atividade em redes direcionadas. Em texturas dinâmicas, as caminhadas determinísticas parcialmente auto-repulsivas foram estendidas para sequências de imagens e obtiveram resultados interessantes em reconhecimento e segmentação. Os métodos propostos foram aplicados em problemas da biologia e nanotecnologia, apresentando resultados interessantes para o desenvolvimento de ambas as áreas. / Texture analysis has attracted an increasing interest in computer vision due to its importance in describing images. Basically, research on textures can be divided into two categories: static and dynamic textures. Static textures are characterized by intensity variations which form a pattern repeated in the image spatially. On the other hand, dynamic textures are patterns of textures present in a sequence of images. Although many studies have been carried out, this area is still open to study, especially in dynamic textures since it is a recent and little-explored subject. This study aims to develop research covering both types of textures in theoretical and practical fields. In static textures, two methods were proposed: (i) based on deterministic partially self-avoiding walks and fractal dimension - (ii) based on activity in directed networks. In dynamic textures, deterministic partially self-avoiding walks were extended to sequences of images and obtained interesting results in recognition and segmentation. The proposed methods were applied to problems of biology and nanotechnology, presenting interesting results in the development of both areas.
2

Análise de texturas estáticas e dinâmicas e suas aplicações em biologia e nanotecnologia / Static and dynamic texture analysis and their applications in biology and nanotechnology

Wesley Nunes Gonçalves 02 August 2013 (has links)
A análise de texturas tem atraído um crescente interesse em visão computacional devido a sua importância na caracterização de imagens. Basicamente, as pesquisas em texturas podem ser divididas em duas categorias: texturas estáticas e texturas dinâmicas. As texturas estáticas são caracterizadas por variações de intensidades que formam um determinado padrão repetido espacialmente na imagem. Por outro lado, as texturas dinâmicas são padrões de texturas presentes em uma sequência de imagens. Embora muitas pesquisas tenham sido realizadas, essa área ainda se encontra aberta a estudos, principalmente em texturas dinâmicas por se tratar de um assunto recente e pouco explorado. Este trabalho tem como objetivo o desenvolvimento de pesquisas que abrangem ambos os tipos de texturas nos âmbitos teórico e prático. Em texturas estáticas, foram propostos dois métodos: (i) baseado em caminhadas determinísticas parcialmente auto-repulsivas e dimensão fractal - (ii) baseado em atividade em redes direcionadas. Em texturas dinâmicas, as caminhadas determinísticas parcialmente auto-repulsivas foram estendidas para sequências de imagens e obtiveram resultados interessantes em reconhecimento e segmentação. Os métodos propostos foram aplicados em problemas da biologia e nanotecnologia, apresentando resultados interessantes para o desenvolvimento de ambas as áreas. / Texture analysis has attracted an increasing interest in computer vision due to its importance in describing images. Basically, research on textures can be divided into two categories: static and dynamic textures. Static textures are characterized by intensity variations which form a pattern repeated in the image spatially. On the other hand, dynamic textures are patterns of textures present in a sequence of images. Although many studies have been carried out, this area is still open to study, especially in dynamic textures since it is a recent and little-explored subject. This study aims to develop research covering both types of textures in theoretical and practical fields. In static textures, two methods were proposed: (i) based on deterministic partially self-avoiding walks and fractal dimension - (ii) based on activity in directed networks. In dynamic textures, deterministic partially self-avoiding walks were extended to sequences of images and obtained interesting results in recognition and segmentation. The proposed methods were applied to problems of biology and nanotechnology, presenting interesting results in the development of both areas.
3

Análise de textura em imagens baseado em medidas de complexidade / Image Texture Analysis based on complex measures

Condori, Rayner Harold Montes 30 November 2015 (has links)
A análise de textura é uma das mais básicas e famosas áreas de pesquisa em visão computacional. Ela é também de grande importância em muitas outras disciplinas, tais como ciências médicas e biológicas. Por exemplo, uma tarefa comum de análise de textura é a detecção de tecidos não saudáveis em imagens de Ressonância Magnética do pulmão. Nesta dissertação, nós propomos um método novo de caracterização de textura baseado nas medidas de complexidade tais como o expoente de Hurst, o expoente de Lyapunov e a complexidade de Lempel-Ziv. Estas medidas foram aplicadas sobre amostras de imagens no espaço de frequência. Três métodos de amostragem foram propostas, amostragem: radial, circular e por caminhadas determinísticas parcialmente auto- repulsivas (amostragem CDPA). Cada método de amostragem produz um vetor de características por medida de complexidade aplicada. Esse vetor contem um conjunto de descritores que descrevem a imagem processada. Portanto, cada imagem será representada por nove vetores de características (três medidas de complexidade e três métodos de amostragem), os quais serão comparados na tarefa de classificação de texturas. No final, concatenamos cada vetor de características conseguido calculando a complexidade de Lempel-Ziv em amostras radiais e circulares com os descritores obtidos através de técnicas de análise de textura tradicionais, tais como padrões binários locais (LBP), wavelets de Gabor (GW), matrizes de co-ocorrência en níveis de cinza (GLCM) e caminhadas determinísticas parcialmente auto-repulsivas em grafos (CDPAg). Este enfoque foi testado sobre três bancos de imagens: Brodatz, USPtex e UIUC, cada um com seus próprios desafios conhecidos. As taxas de acerto de todos os métodos tradicionais foram incrementadas com a concatenação de relativamente poucos descritores de Lempel-Ziv. Por exemplo, no caso do método LBP, o incremento foi de 84.25% a 89.09% com a concatenação de somente cinco descritores. De fato, simplesmente concatenando cinco descritores são suficientes para ver um incremento na taxa de acerto de todos os métodos tradicionais estudados. Por outro lado, a concatenação de un número excessivo de descritores de Lempel-Ziv (por exemplo mais de 40) geralmente não leva a melhora. Neste sentido, vendo os resultados semelhantes obtidos nos três bancos de imagens analisados, podemos concluir que o método proposto pode ser usado para incrementar as taxas de acerto em outras tarefas que envolvam classificação de texturas. Finalmente, com a amostragem CDPA também se obtém resultados significativos, que podem ser melhorados em trabalhos futuros. / Texture analysis is one of the basic and most popular computer vision research areas. It is also of importance in many other disciplines, such as medical sciences and biology. For example, non-healthy tissue detection in lung Magnetic Resonance images is a common texture analysis task. We proposed a novel method for texture characterization based on complexity measures such as Lyapunov exponent, Hurst exponent and Lempel-Ziv complexity. This measurements were applied over samples taken from images in the frequency domain. Three types of sampling methods were proposed: radial sampling, circular sampling and sampling by using partially self-avoiding deterministic walks (CDPA sampling). Each sampling method produce a feature vector which contains a set of descriptors that characterize the processed image. Then, each image will be represented by nine feature vectors which are means to be compared in texture classification tasks (three complexity measures over samples from three sampling methods). In the end, we combine each Lempel-Ziv feature vector from the circular and radial sampling with descriptors obtained through traditional image analysis techniques, such as Local Binary Patterns (LBP), Gabor Wavelets (GW), Gray Level Co-occurrence Matrix (GLCM) and Self-avoiding Deterministic Walks in graphs (CDPAg). This approach were tested in three datasets: Brodatz, USPtex and UIUC, each one with its own well-known challenges. All traditional methods success rates were increased by adding relatively few Lempel-Ziv descriptors. For example in the LBP case the increment went from 84.25% to 89.09% with the addition of only five descriptors. In fact, just adding five Lempel-Ziv descriptors are enough to see an increment in the success rate of every traditional method. However, adding too many Lempel-Ziv descriptors (for example more than 40) generally doesnt produce better results. In this sense, seeing the similar results we obtain in all three databases, we conclude that this approach may be used to increment the success rate in a lot of others texture classification tasks. Finally, the CDPA sampling also obtain very promising results that we can improve further on future works.
4

Análise de textura em imagens baseado em medidas de complexidade / Image Texture Analysis based on complex measures

Rayner Harold Montes Condori 30 November 2015 (has links)
A análise de textura é uma das mais básicas e famosas áreas de pesquisa em visão computacional. Ela é também de grande importância em muitas outras disciplinas, tais como ciências médicas e biológicas. Por exemplo, uma tarefa comum de análise de textura é a detecção de tecidos não saudáveis em imagens de Ressonância Magnética do pulmão. Nesta dissertação, nós propomos um método novo de caracterização de textura baseado nas medidas de complexidade tais como o expoente de Hurst, o expoente de Lyapunov e a complexidade de Lempel-Ziv. Estas medidas foram aplicadas sobre amostras de imagens no espaço de frequência. Três métodos de amostragem foram propostas, amostragem: radial, circular e por caminhadas determinísticas parcialmente auto- repulsivas (amostragem CDPA). Cada método de amostragem produz um vetor de características por medida de complexidade aplicada. Esse vetor contem um conjunto de descritores que descrevem a imagem processada. Portanto, cada imagem será representada por nove vetores de características (três medidas de complexidade e três métodos de amostragem), os quais serão comparados na tarefa de classificação de texturas. No final, concatenamos cada vetor de características conseguido calculando a complexidade de Lempel-Ziv em amostras radiais e circulares com os descritores obtidos através de técnicas de análise de textura tradicionais, tais como padrões binários locais (LBP), wavelets de Gabor (GW), matrizes de co-ocorrência en níveis de cinza (GLCM) e caminhadas determinísticas parcialmente auto-repulsivas em grafos (CDPAg). Este enfoque foi testado sobre três bancos de imagens: Brodatz, USPtex e UIUC, cada um com seus próprios desafios conhecidos. As taxas de acerto de todos os métodos tradicionais foram incrementadas com a concatenação de relativamente poucos descritores de Lempel-Ziv. Por exemplo, no caso do método LBP, o incremento foi de 84.25% a 89.09% com a concatenação de somente cinco descritores. De fato, simplesmente concatenando cinco descritores são suficientes para ver um incremento na taxa de acerto de todos os métodos tradicionais estudados. Por outro lado, a concatenação de un número excessivo de descritores de Lempel-Ziv (por exemplo mais de 40) geralmente não leva a melhora. Neste sentido, vendo os resultados semelhantes obtidos nos três bancos de imagens analisados, podemos concluir que o método proposto pode ser usado para incrementar as taxas de acerto em outras tarefas que envolvam classificação de texturas. Finalmente, com a amostragem CDPA também se obtém resultados significativos, que podem ser melhorados em trabalhos futuros. / Texture analysis is one of the basic and most popular computer vision research areas. It is also of importance in many other disciplines, such as medical sciences and biology. For example, non-healthy tissue detection in lung Magnetic Resonance images is a common texture analysis task. We proposed a novel method for texture characterization based on complexity measures such as Lyapunov exponent, Hurst exponent and Lempel-Ziv complexity. This measurements were applied over samples taken from images in the frequency domain. Three types of sampling methods were proposed: radial sampling, circular sampling and sampling by using partially self-avoiding deterministic walks (CDPA sampling). Each sampling method produce a feature vector which contains a set of descriptors that characterize the processed image. Then, each image will be represented by nine feature vectors which are means to be compared in texture classification tasks (three complexity measures over samples from three sampling methods). In the end, we combine each Lempel-Ziv feature vector from the circular and radial sampling with descriptors obtained through traditional image analysis techniques, such as Local Binary Patterns (LBP), Gabor Wavelets (GW), Gray Level Co-occurrence Matrix (GLCM) and Self-avoiding Deterministic Walks in graphs (CDPAg). This approach were tested in three datasets: Brodatz, USPtex and UIUC, each one with its own well-known challenges. All traditional methods success rates were increased by adding relatively few Lempel-Ziv descriptors. For example in the LBP case the increment went from 84.25% to 89.09% with the addition of only five descriptors. In fact, just adding five Lempel-Ziv descriptors are enough to see an increment in the success rate of every traditional method. However, adding too many Lempel-Ziv descriptors (for example more than 40) generally doesnt produce better results. In this sense, seeing the similar results we obtain in all three databases, we conclude that this approach may be used to increment the success rate in a lot of others texture classification tasks. Finally, the CDPA sampling also obtain very promising results that we can improve further on future works.

Page generated in 0.107 seconds