• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resolubilidade global de uma classe de campos vetoriais / Global solvability for a class of vector field

Gonzalez, Rafael Borro 25 February 2011 (has links)
O tema em estudo é a resolubilidade global de campos vetoriais em \'T POT. 2 IND. (x,t)\' da forma L = \'\\partial IND. t\' +a(x) \'\\PARTIAL IND. x\', onde a \'PERTENCE\' \'C POT. INFINITO\' (\'T POT. 1\' ) é uma função real. Consideraremos o caso em que o operador L age no espaço de funções e o caso em que L age no espaço de distribuições. Utilizando teoria de distribuições, forneceremos condições necessárias e sufiientes para que a imagem de L seja um subespaço fechado, ou seja, para que L seja globalmente resolúvel. O caso mais interessante ocorre quando a função a se anula em algum ponto mas não é identicamente nula; neste caso, L será globalmente resolúvel se, e somente se, \'a POT. -1\' (0) contiver apenas zeros de ordem finita. Faremos também o estudo da resolubilidade global de operadores da forma P = \'\\PARTIAL IND. t\' + \\PARTIAL IND. x\' (\'a AST .\'), os quais são perturbações por um termo de ordem zero dos campos da forma L. Os operadores da forma P surgem quando consideramos o transposto de um operador da forma L / The topic under study is the global solvability of vector fields of the form L = \'\\PARTIAL IND. t\'+a(x)\'\\PARTIAL IND.x\' on the 2-torus \'T POT. 2 IND. (x;t)\' ; where a \'IT BELONGS\' \'C POT. INFINITY\' (\'T POT. 1\') is a real valued function. We consider the operator L acting on both spaces of functions and distributions. Using distribution theory we give necessary and sufficient conditions for the closedness of the range of L, ie, for L to be globally solvable. The most interesting case occurs when a vanishes somewhere but not everywhere; in this case, we show that a necessary and sufficient condition for L to be globally solvable is that each zero of a is of finite order. We also study the global solvability of operators of the form P = \'\\ PARTIAL IND. t\'+\'\\ PARTIAL IND. x(\'a AST .\' which are perturbations of L by a term of zero order. The operators P appear when we consider the transpose operator of L
2

Resolubilidade global de uma classe de campos vetoriais / Global solvability for a class of vector field

Rafael Borro Gonzalez 25 February 2011 (has links)
O tema em estudo é a resolubilidade global de campos vetoriais em \'T POT. 2 IND. (x,t)\' da forma L = \'\\partial IND. t\' +a(x) \'\\PARTIAL IND. x\', onde a \'PERTENCE\' \'C POT. INFINITO\' (\'T POT. 1\' ) é uma função real. Consideraremos o caso em que o operador L age no espaço de funções e o caso em que L age no espaço de distribuições. Utilizando teoria de distribuições, forneceremos condições necessárias e sufiientes para que a imagem de L seja um subespaço fechado, ou seja, para que L seja globalmente resolúvel. O caso mais interessante ocorre quando a função a se anula em algum ponto mas não é identicamente nula; neste caso, L será globalmente resolúvel se, e somente se, \'a POT. -1\' (0) contiver apenas zeros de ordem finita. Faremos também o estudo da resolubilidade global de operadores da forma P = \'\\PARTIAL IND. t\' + \\PARTIAL IND. x\' (\'a AST .\'), os quais são perturbações por um termo de ordem zero dos campos da forma L. Os operadores da forma P surgem quando consideramos o transposto de um operador da forma L / The topic under study is the global solvability of vector fields of the form L = \'\\PARTIAL IND. t\'+a(x)\'\\PARTIAL IND.x\' on the 2-torus \'T POT. 2 IND. (x;t)\' ; where a \'IT BELONGS\' \'C POT. INFINITY\' (\'T POT. 1\') is a real valued function. We consider the operator L acting on both spaces of functions and distributions. Using distribution theory we give necessary and sufficient conditions for the closedness of the range of L, ie, for L to be globally solvable. The most interesting case occurs when a vanishes somewhere but not everywhere; in this case, we show that a necessary and sufficient condition for L to be globally solvable is that each zero of a is of finite order. We also study the global solvability of operators of the form P = \'\\ PARTIAL IND. t\'+\'\\ PARTIAL IND. x(\'a AST .\' which are perturbations of L by a term of zero order. The operators P appear when we consider the transpose operator of L

Page generated in 0.0342 seconds