• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 35
  • 35
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Connectivity and runoff dynamics in heterogeneous drainage basins

Phillips, Ross Wilson 16 March 2011
A drainage basins runoff response can be determined by the connectivity of generated runoff to the stream network and the connectivity of the downstream stream network. The connectivity of a drainage basin modulates its ability to produce streamflow and respond to precipitation events and is a function of the complex and variable storage capacities along the drainage network. An improved means to measure and account for the dynamics of hydrological connectivity at the basin scale is needed to improve prediction of basin scale streamflow. The overall goal of this thesis is to improve the understanding of hydrological connectivity at the basin scale by measuring hydrological connectivity at the Baker Creek Research Basin during 2009. To this end, the objectives are to 1) investigate the dynamics of hydrological connectivity during a typical water year, 2) define the relationship between the contributing stream network and contributing area, 3) investigate how hydrological connectivity influences streamflow, and 4) define how hydrological connectivity influences runoff response to rainfall events. At a 150 km2 subarctic Precambrian Shield catchment where the poorly-drained heterogeneous mosaic of lakes, exposed bedrock, and soil filled areas creates variable contributing areas, hydrological connectivity was measured between April and September 2009 in 10 sub-basins with a particular focus on three representative sub-basins. The three sub-basins, although of similar relative size, vary considerably in the dominant typology and topology of their constituent elements. At a 10 m spatial resolution, saturated areas were mapped using both multispectral satellite imagery and in situ measurements of storage according to land cover. To measure basin scale hydrological connectivity, the drainage network was treated as a graph network with stream reaches being the edges that connect sub-catchment nodes. The overall hydrological connectivity of the stream network was described as the ratio of actively flowing relative to potentially flowing stream reaches, and the hydrological connectivity of the stream network to the outlet was described as the ratio of actively flowing stream reaches that were connected to the outlet relative to the potentially flowing stream reaches. Hydrological connectivity was highest during the spring freshet but the stream network began to disintegrate with its passing. In some drainage basins, large gate keepers were able to maintain connectivity of the stream network downstream during dry periods. The length of the longest stream was found to be proportional to contributing area raised to a power of 0.605, similar to that noted in Hacks Law and modified Hacks Law relationships. The length of the contributing stream network was also found to be proportional to contributing area raised to a power of 0.851. In general, higher daily average streamflows were noted for higher states of connectivity to the outlet although preliminary investigations allude to the existence of hysteresis in these relationships. Elevated levels of hydrological connectivity were also found to yield higher basin runoff ratios but the shape of the characteristic curve for each basin was heavily influenced by key traits of its land cover heterogeneity. The implications of these findings are that accurate prediction of streamflow and runoff response in a heterogeneous drainage basin with dynamic connectivity will require both an account of the presence or absence of connections but also a differentiation of connection type and an incorporation of aspects of local function that control the flow through connections themselves. The improved understanding of causal factors for the variable streamflow response to runoff generation in this environment will serve as a first step towards developing improved streamflow prediction methods in formerly glaciated landscapes, especially in small ungauged basins.
12

Individuation: A Heroic Journey through the Canadian Shield

Singh, Somya January 2008 (has links)
The thesis explores how elemental architecture in collaboration with the Shield can manifest a threshold condition in which a modern day hero myth can be enacted in the Canadian wilderness. Through the lens of Joseph Campbell, Tom Thomson and the archetypal structures of the Finns and Algonkians, a design proposal is derived for a Waterway Park in the Algonquin region that expands the mandate of the Ontario Parks System. In the realm of psychology, Carl Gustav Jung defines individuation as a universal quest that encourages facing and overcoming ones internal demons in order to live a more integrated existence. Located in Oxtongue River Ragged Falls Provincial Park, this proposed experimental pilgrimage retreat connects a series of primary and secondary paths to cabins, a sweat lodge and a chapel. This model illustrates a method of inhabiting a protected wilderness site that can be applied to existing and future Parks to inspire a condition of corporeal and spiritual rejuvenation in Ontario’s near North.
13

Individuation: A Heroic Journey through the Canadian Shield

Singh, Somya January 2008 (has links)
The thesis explores how elemental architecture in collaboration with the Shield can manifest a threshold condition in which a modern day hero myth can be enacted in the Canadian wilderness. Through the lens of Joseph Campbell, Tom Thomson and the archetypal structures of the Finns and Algonkians, a design proposal is derived for a Waterway Park in the Algonquin region that expands the mandate of the Ontario Parks System. In the realm of psychology, Carl Gustav Jung defines individuation as a universal quest that encourages facing and overcoming ones internal demons in order to live a more integrated existence. Located in Oxtongue River Ragged Falls Provincial Park, this proposed experimental pilgrimage retreat connects a series of primary and secondary paths to cabins, a sweat lodge and a chapel. This model illustrates a method of inhabiting a protected wilderness site that can be applied to existing and future Parks to inspire a condition of corporeal and spiritual rejuvenation in Ontario’s near North.
14

The Evolving Muskoka Vacation Experience 1860-1945

Shifflett, Geoffrey January 2012 (has links)
This dissertation examines the development of tourism in Muskoka in the Canadian Shield region from 1860 to 1945. Three key themes are examined: the tourists, the resorts and projected image of the area. When taken together, they provide insight into the origin and evolution of the meanings attached to tourist destinations in the Canadian Shield. The Muskoka Lakes region provides the venue in which continuity and change in each of these elements of the tourism landscape are explored. This dissertation uses previously underutilized primary source materials ranging from hotel ledgers, financial reports, personal correspondence, period brochures, guidebooks, and contemporary newspaper articles to reconstruct the Muskoka tourist experience over an extended period of time. The volume of literature pertaining to American tourism history significantly outweighs similar work conducted on Canadian destinations. This dissertation, therefore, begins with an overview of key works related to the historical development of tourism in the United States followed by a survey of corresponding Canadian literature. The lack of an analytical structure in many tourist historical works is identified as a methodological gap in the literature. A framework is developed to guide data acquisition. Utilizing this framework, the tourists, resorts and images that were projected of Muskoka are examined through five stages of development, from the opening of the region to tourists to the immediate postwar era. The findings from this analysis are used to build an understanding of the changes and continuities in the meanings, or essence, of the Canadian Shield tourist experience. While significant changes are observed in the nature of the tourists, the form and function of tourist lodgings, and the content of projected images, the meaning of the Canadian Shield tourist experience exhibits substantial continuity. From the beginning of tourist development, two opposing perspectives emerge: those of the insider and the outsider. Insiders were thought to be more unpretentious, cognizant of tradition, with a greater sense of belonging in the landscape than the outsiders who were perceived to be pretentious, conscious of societal norms, and a threat to the established traditions of the resort region. The meanings of the destination are informed by the dialogue and tensions between these two perspectives on what a Canadian Shield vacation experience should entail. These meanings, which reflect perceptions of a lifestyle that has been and is continuously under threat from outside forces, persists throughout the stages of tourism development in Muskoka and can be observed in the contemporary period.
15

Connectivity and runoff dynamics in heterogeneous drainage basins

Phillips, Ross Wilson 16 March 2011 (has links)
A drainage basins runoff response can be determined by the connectivity of generated runoff to the stream network and the connectivity of the downstream stream network. The connectivity of a drainage basin modulates its ability to produce streamflow and respond to precipitation events and is a function of the complex and variable storage capacities along the drainage network. An improved means to measure and account for the dynamics of hydrological connectivity at the basin scale is needed to improve prediction of basin scale streamflow. The overall goal of this thesis is to improve the understanding of hydrological connectivity at the basin scale by measuring hydrological connectivity at the Baker Creek Research Basin during 2009. To this end, the objectives are to 1) investigate the dynamics of hydrological connectivity during a typical water year, 2) define the relationship between the contributing stream network and contributing area, 3) investigate how hydrological connectivity influences streamflow, and 4) define how hydrological connectivity influences runoff response to rainfall events. At a 150 km2 subarctic Precambrian Shield catchment where the poorly-drained heterogeneous mosaic of lakes, exposed bedrock, and soil filled areas creates variable contributing areas, hydrological connectivity was measured between April and September 2009 in 10 sub-basins with a particular focus on three representative sub-basins. The three sub-basins, although of similar relative size, vary considerably in the dominant typology and topology of their constituent elements. At a 10 m spatial resolution, saturated areas were mapped using both multispectral satellite imagery and in situ measurements of storage according to land cover. To measure basin scale hydrological connectivity, the drainage network was treated as a graph network with stream reaches being the edges that connect sub-catchment nodes. The overall hydrological connectivity of the stream network was described as the ratio of actively flowing relative to potentially flowing stream reaches, and the hydrological connectivity of the stream network to the outlet was described as the ratio of actively flowing stream reaches that were connected to the outlet relative to the potentially flowing stream reaches. Hydrological connectivity was highest during the spring freshet but the stream network began to disintegrate with its passing. In some drainage basins, large gate keepers were able to maintain connectivity of the stream network downstream during dry periods. The length of the longest stream was found to be proportional to contributing area raised to a power of 0.605, similar to that noted in Hacks Law and modified Hacks Law relationships. The length of the contributing stream network was also found to be proportional to contributing area raised to a power of 0.851. In general, higher daily average streamflows were noted for higher states of connectivity to the outlet although preliminary investigations allude to the existence of hysteresis in these relationships. Elevated levels of hydrological connectivity were also found to yield higher basin runoff ratios but the shape of the characteristic curve for each basin was heavily influenced by key traits of its land cover heterogeneity. The implications of these findings are that accurate prediction of streamflow and runoff response in a heterogeneous drainage basin with dynamic connectivity will require both an account of the presence or absence of connections but also a differentiation of connection type and an incorporation of aspects of local function that control the flow through connections themselves. The improved understanding of causal factors for the variable streamflow response to runoff generation in this environment will serve as a first step towards developing improved streamflow prediction methods in formerly glaciated landscapes, especially in small ungauged basins.
16

The Evolving Muskoka Vacation Experience 1860-1945

Shifflett, Geoffrey January 2012 (has links)
This dissertation examines the development of tourism in Muskoka in the Canadian Shield region from 1860 to 1945. Three key themes are examined: the tourists, the resorts and projected image of the area. When taken together, they provide insight into the origin and evolution of the meanings attached to tourist destinations in the Canadian Shield. The Muskoka Lakes region provides the venue in which continuity and change in each of these elements of the tourism landscape are explored. This dissertation uses previously underutilized primary source materials ranging from hotel ledgers, financial reports, personal correspondence, period brochures, guidebooks, and contemporary newspaper articles to reconstruct the Muskoka tourist experience over an extended period of time. The volume of literature pertaining to American tourism history significantly outweighs similar work conducted on Canadian destinations. This dissertation, therefore, begins with an overview of key works related to the historical development of tourism in the United States followed by a survey of corresponding Canadian literature. The lack of an analytical structure in many tourist historical works is identified as a methodological gap in the literature. A framework is developed to guide data acquisition. Utilizing this framework, the tourists, resorts and images that were projected of Muskoka are examined through five stages of development, from the opening of the region to tourists to the immediate postwar era. The findings from this analysis are used to build an understanding of the changes and continuities in the meanings, or essence, of the Canadian Shield tourist experience. While significant changes are observed in the nature of the tourists, the form and function of tourist lodgings, and the content of projected images, the meaning of the Canadian Shield tourist experience exhibits substantial continuity. From the beginning of tourist development, two opposing perspectives emerge: those of the insider and the outsider. Insiders were thought to be more unpretentious, cognizant of tradition, with a greater sense of belonging in the landscape than the outsiders who were perceived to be pretentious, conscious of societal norms, and a threat to the established traditions of the resort region. The meanings of the destination are informed by the dialogue and tensions between these two perspectives on what a Canadian Shield vacation experience should entail. These meanings, which reflect perceptions of a lifestyle that has been and is continuously under threat from outside forces, persists throughout the stages of tourism development in Muskoka and can be observed in the contemporary period.
17

Water Storage Dynamics in Peat-Filled Depressions of the Canadian Shield Rock Barrens: Implications for Primary Peat Formation

Didemus, Benjamin January 2016 (has links)
Northern peatlands have acted as persistent sinks of CO2 throughout the Holocene largely owing to their ability to maintain shallow water table depths that limit decomposition rates and supports the growth of keystone vegetation including Sphagnum mosses. There is concern, however, that the future success and ecosystem function of these northern peat deposits may be at risk to climate change, where temperatures and evaporation rates are predicted to increase substantially in the next century. While numerous studies have examined the hydrology and carbon dynamics in large expansive peatland systems where a water table (WT) is ever-present, relatively little research has been done on small scale peat-accumulating systems where their vulnerability remains unknown. One region where a broad spectrum in the scale of peat accumulation is present is in the bedrock depressions of Canadian Shield rock barrens, which are of special importance as many peat deposits here provide habitat to species at risk including the Blanding’s Turtle and the Massassauga Rattlesnake. This study examines the controls that govern water storage dynamics and moss water availability in 18 different peat-accumulating depressions that vary in size, catchment area, and sediment composition. The magnitude of WT variability was often several times greater in shallower bedrock depressions (<50 cm deep) as compared to deeper ‘bogs’ (>60 cm deep). The magnitude of depression WT variability appeared to be closely linked to the WT depth (WTD), the relative proportions of different sediment types within the depression, and the depth dependant specific yield (Sy) of each sediment type. Sites which contained large fractions of Polytrichum moss or mineral soil – which were more common in shallow depressions ¬¬– had the greatest WT variability due to the lower porosity and Sy of this sediment as compared to Sphagnum peat. Sphagnum dominated ‘vernal pools’ (30-50 cm deep) had a WT variability two to three times greater than Sphagnum dominated bogs at WTDs > 20-25 cm, which may be related to exceptionally high ash concentrations near the base of vernal pools which reduced peat porosity and Sy as compared to more organic-rich peat. As compared to bogs, pits (<15 cm deep) and vernal pools had greater rates of WT decline during drying intervals, deeper average WTDs when a WT was present, and extended periods of WT absence during the summer months. As such, moss growing in pits and vernal pools generally had lower near-surface water availability as compared to bogs, though the importance of depression depth in determining the timing of moss stress is also dependant on the hydrophysical properties (Kunsat and moisture retention) of the moss species in question. WT dynamics and moss water availability were generally weakly correlated to depression catchment size, although during wetter periods of the year the rate of WT recession was moderated in pits and vernal pools which had an upslope depression that could provide sustained water inputs for multiple days after rainfall. The results of this study suggest that depression depth may be a first order control in determining peatland vulnerability to future regime shifts induced by external forcings or disturbances. Furthermore, this study suggests that systematic differences may exist between the hydrophysical properties of peat in shallow vs. large bedrock depressions, potentially resulting from contrasts in fire frequency/severity, and/or the degree of humification/compression among geological settings. / Thesis / Master of Science (MSc) / Canada is home to one of the largest reservoirs of organic carbon stored on land in the world, in unique ecosystems called peatlands. Peatlands are formed in wetland environments where a thick layer of organic matter has accumulated over time due to the average rate of vegetation growth on the surface of peatlands exceeding the rate of decomposition of the underlying organic matter. This net accumulation of organic matter over time has caused peatlands to act as a long term sink of carbon dioxide, which is a greenhouse gas that is a primary driver of global warming. The ability of peatlands to have slow decomposition rates and support the growth of key peatland vegetation, most notably various species of ‘peat moss’, is highly dependent upon their ability to keep their water table (i.e. the surface below which pore spaces in the organic matter are saturated with water) close to their growing surface. There is concern, however, that a warmer and dryer climate in the future could cause deeper water table positions in peatlands, thereby increasing decomposition rates, decreasing the growth rate of peat moss, and potentially turning peatlands into a net source of carbon dioxide. Most peatland studies to date, however, have focused on water storage/movement and carbon exchange in large, deep peatland systems, whereas relatively little research has been conducted on smaller peatlands. As such, the vulnerability of these smaller peatlands to future climate change remains uncertain. One region where peatlands exist over a wide range of different sizes and landscape positions is in bedrock depressions of the Canadian Shield, which are of special interest as they also provide habitat for species at risk including the Blanding’s Turtle and the Massassauga Rattlesnake. This study looked at how the water table positions and water availability to different species of peat moss compared over the growing season between 18 peatlands of different sizes and landscape position (i.e. peatlands with a relatively ‘small’ and ‘large’ area upslope of them). This study finds that deeper peatlands (with organic matter layers > 60 cm deep) usually had a shallower water table over the summer months than shallower peatlands (< 50 cm deep), primarily due to differences in the properties of the organic matter underlying their growing surfaces. Furthermore, each of the 12 studied peatlands < 50 cm deep lost their water table for a considerable amount of time during the summer (when their water table position dropped below the underlying bedrock of the depression), whereas each of the six peatlands > 60 cm deep had a water table present for the entire growing season. Surprisingly, a peatland’s position on the landscape seemed to have a relatively minor effect on determining the depth/presence of its water table. As deeper peatlands usually had a water table that was closer to the growing surface and was always present, more moisture was available to the peat moss growing at their surface than for peat moss in shallower depressions, though this moisture availability also depended upon the growth form of the different species of peat moss (some species of peat moss were better at accessing subsurface water than others). Through its impact on water table positions and moisture availability for peat moss, peatland depth is likely a primary control governing peatland vulnerability climate change, with shallower peatlands being more vulnerable to warmer and dryer conditions in the future.
18

Paleoevolution of Pore Fluids in Glaciated Geologic Settings

Normani, Stefano Delfino January 2009 (has links)
Nuclear power generation is being regarded as a solution to ever increasing demand for electricity, and concerns over global warming and climate change due to the use of fossil fuels. Although nuclear power generation is considered to be reliable, economical, clean, and safe, the wastes produced from the nuclear fuel cycle are not, and can remain hazardous for hundreds of thousands of years. An international consensus has developed over the past several decades that deep geologic disposal of low, intermediate, and high level radioactive wastes is the best option to protect the biosphere. In this thesis, both regional scale and sub-regional scale models are created to simulate groundwater flow and transport for a representative Canadian Shield setting, honouring site-specific topography and surface water features. Sub-surface characteristics and properties are derived from numerous geoscience studies. In addition, a regional scale model is developed, centred on the Bruce Nuclear Power Development (BNPD) site near Tiverton, Ontario, and located within the Michigan Basin. Ontario Power Generation (OPG) has proposed a Deep Geologic Repository (DGR) for low & intermediate level waste (L&ILW) at the BNPD site. Paleoclimate simulations using various combinations of parameters are performed for both the Canadian Shield Sub-Regional model, and the Michigan Basin Regional model. Fracture zone permeability is a very important parameter when modelling crystalline rock settings. Migration of a unit tracer representing glacial recharge water can occur to depth in fractures of high permeability. Representative rock compressibility values are necessary as compressibilities are used to calculate storage coefficients, and the one-dimensional loading efficiency; these affect the subsurface propagation of elevated pore pressures due to glacial loading at surface. Coupled density-dependent flow and transport in paleoclimate simulations affects deep flow systems and provides a measure of flow stability, as well as increasing the mean life expectancy at depth. Finally, hydromechanical coupling is a very important mechanism for reducing vertical hydraulic gradients during a glaciation event when a hydraulic boundary condition equal to the pressure at the base of an ice-sheet is applied at ground surface. Pore water velocities are reduced, thereby retarding migration of surface waters into the subsurface environment.
19

Paleoevolution of Pore Fluids in Glaciated Geologic Settings

Normani, Stefano Delfino January 2009 (has links)
Nuclear power generation is being regarded as a solution to ever increasing demand for electricity, and concerns over global warming and climate change due to the use of fossil fuels. Although nuclear power generation is considered to be reliable, economical, clean, and safe, the wastes produced from the nuclear fuel cycle are not, and can remain hazardous for hundreds of thousands of years. An international consensus has developed over the past several decades that deep geologic disposal of low, intermediate, and high level radioactive wastes is the best option to protect the biosphere. In this thesis, both regional scale and sub-regional scale models are created to simulate groundwater flow and transport for a representative Canadian Shield setting, honouring site-specific topography and surface water features. Sub-surface characteristics and properties are derived from numerous geoscience studies. In addition, a regional scale model is developed, centred on the Bruce Nuclear Power Development (BNPD) site near Tiverton, Ontario, and located within the Michigan Basin. Ontario Power Generation (OPG) has proposed a Deep Geologic Repository (DGR) for low & intermediate level waste (L&ILW) at the BNPD site. Paleoclimate simulations using various combinations of parameters are performed for both the Canadian Shield Sub-Regional model, and the Michigan Basin Regional model. Fracture zone permeability is a very important parameter when modelling crystalline rock settings. Migration of a unit tracer representing glacial recharge water can occur to depth in fractures of high permeability. Representative rock compressibility values are necessary as compressibilities are used to calculate storage coefficients, and the one-dimensional loading efficiency; these affect the subsurface propagation of elevated pore pressures due to glacial loading at surface. Coupled density-dependent flow and transport in paleoclimate simulations affects deep flow systems and provides a measure of flow stability, as well as increasing the mean life expectancy at depth. Finally, hydromechanical coupling is a very important mechanism for reducing vertical hydraulic gradients during a glaciation event when a hydraulic boundary condition equal to the pressure at the base of an ice-sheet is applied at ground surface. Pore water velocities are reduced, thereby retarding migration of surface waters into the subsurface environment.
20

Interactions between Chaoborus spp. and Mysis relicta and their impact on pelagic crustacean zooplankton in mesocosms at the Experimental Lakes Area

Seckar, Dalila 13 April 2009 (has links)
The objectives of this study were: 1) to compare and contrast the effects of variations in natural densities of two common freshwater predators of crustacean zooplankton, Chaoborus spp. and Mysis relicta; and 2) to determine whether the combined impacts of these predators together differed from their effects when alone. In deep (>10m) mesocosms, additions of Chaoborus and Mysis at natural densities did not result in large changes in zooplankton abundances, lengths, or biomass. Significant decreases in abundance were observed only for Bosmina longirostris and Daphnia spp. In small (~20L) enclosures, higher predator densities caused zooplankton declines over three days. Strong interactive effects between Chaoborus and Mysis were not detected in either the large or small enclosures. This suggests that the combined effects of these two predators can be predicted from their effects determined in isolation.

Page generated in 0.064 seconds