Spelling suggestions: "subject:"canal HCN"" "subject:"kanal HCN""
1 |
A computational docking and molecular dynamics simulations study to identify the putative phosphoinositide binding site(s) of HCN channelsKhoualdi, Asma Feriel 04 1900 (has links)
Les canaux nucléotidiques cycliques activés par hyperpolarization (HCN) sont un type de canaux ioniques voltage-dépendants qui contrôlent l'activité rythmique et la plasticité synaptique dans le cœur et le cerveau. Ces canaux permettent aux ions K+ et Na+ de passer, créant ainsi un courant entrant lors de l'hyperpolarization de la membrane. En raison de ses propriétés biophysiques inhabituelles, ce courant est appelé courant «If» ou courant d'hyperpolarization «Ih». Des anomalies du courant Ih sont associées à des arythmies et des troubles neurologiques, y compris l'épilepsie. On constate que différentes molécules modulent ce courant. Des résultats expérimentaux ont montré que les lipides jouent un rôle dans le déplacement de la dépendance en tension des canaux HCN vers des tensions plus positives ou dépolarisées. Le phosphatidylinositol 4,5-bisphosphate de phospholipide endogène et exogène, ou PI (4,5) P2, régule les canaux HCN en déplaçant l'ouverture du canal vers une tension plus dépolarisée. Cette modulation est supposée être par interaction directe de PI (4,5) P2 avec le canal HCN. Ici, nous utilisons la dynamique moléculaire et l'amarrage pour explorer et identifier le site de liaison grâce à l'analyse des contacts et de la stabilité des liaisons hydrogène impliquées dans les molécules de phsiphoinositide et l'interaction des canaux HCN. Nous proposons LYS et ARG du domaine HCN et S3 pour être des résidus clés dans le site de liaison à travers lequel les molécules de phosphoinositide peuvent potentiellement activer le canal. / Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are a type of voltage gated ion channels that control rhythmic activity and synaptic plasticity in the heart and brain. These channels allow K+ and Na+ ions to pass, thereby creating an inward current upon hyperpolarization of the membrane. Due to its unusual biophysical properties, this current is called funny « If» or hyperpolarization « Ih » current. Abnormalities in Ih current are associated with arrythmia and neurological disorders including epilepsy. Different molecules are found to modulate this current. Experimental results have shown that lipids play a role in shifting the voltage dependence of HCN channels to more positive, or depolarized voltages. Both endogenous and exogenous phospholipid phosphatidylinositol 4,5-bisphosphate, or PI(4,5)P2, regulates HCN channels by shifting the opening of the channel to a more depolarized voltage. This modulation is postulated to be through direct interaction of PI(4,5)P2 with the HCN channel. Here, we use molecular dynamics and docking to explore and identify the binding site through analysis of the contacts and stability of the hydrogen bonds involved in phosphoinositide molecules and HCN channel interaction. We propose LYS and ARG residues of the HCN domain and S3 to be key residues in the binding site through which phosphoinositide molecules can potentially activate the channel.
|
2 |
Structural dynamics of the selectivity filter in HCN1 ion channelAhrari, Sajjad 05 1900 (has links)
Les canaux HCN (cycliques nucléotidiques) activés par hyperpolarisation appartiennent à la superfamille des canaux cationiques voltage-dépendants et sont responsables de la génération de courant drôle (If) dans les cellules cardiaques et neuronales. Malgré la similitude structurelle globale avec le potassium voltage-dépendant (Kv) et les canaux ioniques cycliques nucléotidiques (CNG), ils montrent un modèle de sélectivité distinctif pour les ions K+ et Na+. Plus précisément, leur perméabilité accrue aux ions Na+ est essentielle à son rôle dans la dépolarisation des membranes cellulaires. Ils sont également l'une des seules protéines connues à sélectionner entre les ions Na+ et Li+, faisant des HCN des canaux semi-sélectifs. Ici, nous étudions les propriétés de sélectivité uniques des canaux HCN à l'aide de simulations de dynamique moléculaire. Nos simulations suggèrent que le pore HCN1 est très flexible et dilaté par rapport aux canaux Kv et qu'il n'y a qu'un seul site de liaison ionique stable dans le filtre de sélectivité qui les distingue des canaux Kv et CNG. Nous observons également que la coordination et l'hydratation des ions diffèrent dans le filtre de sélectivité de HCN1 par rapport aux canaux Kv et CNG. De plus, la coordination des ions K+ par les groupes carbonyle du filtre de sélectivité est plus stable par rapport aux ions Na+ et Li+, ce qui peut expliquer les propriétés de sélectivité distinctes du canal. / Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels belong to the voltage-gated cation channel superfamily and are responsible for the generation of funny current (If) in cardiac and neuronal cells. Despite the overall structural similarity to voltage-gated potassium (Kv) and cyclic nucleotide-gated (CNG) ion channels, they show distinctive selectivity pattern for K+ and Na+ ions. Specifically, their increased permeability to Na+ ions is critical to its role in depolarizing cellular membranes. They are also one of the only known proteins to select between Na+ and Li+ ions, making HCNs semi-selective channels. Here we investigate the unique selectivity properties of HCN channels using molecular dynamics simulations. Our simulations suggest that the HCN1 pore is very flexible and dilatated compared to Kv channels and that there is only one stable ion binding site within the selectivity filter which discriminates them from both Kv and CNG channels. We also observe that ion co-ordination and hydration differ within the selectivity filter of HCN1 compared to Kv and CNG channels. Additionally, the co-ordination of K+ ions by the carbonyl groups of the selectivity filter is more stable compared to Na+ and Li+ ions, which may explain the channel's distinct selectivity properties.
|
Page generated in 0.0358 seconds