Spelling suggestions: "subject:"cancer -- aadiation therapy"" "subject:"cancer -- eradiation therapy""
1 |
Optimization approaches for planning external beam radiotherapyGozbasi, Halil Ozan 20 May 2010 (has links)
External beam radiotherapy is delivered from outside the body aimed at cancer cells to damage their DNA making them unable to divide and reproduce. The beams travel through the body and may damage nearby healthy tissues unless carefully planned. Therefore, the goal of treatment plan optimization is to find the best system configuration to deliver sufficient dose to target structures while avoiding damage to healthy tissues. This thesis investigates optimization approaches for two external beam radiation therapy techniques: Intensity-Modulated Radiation Therapy (IMRT) and Volumetric-Modulated Arc Therapy (VMAT). We develop an automated treatment planning technology for IMRT which generates several high-quality treatment plans satisfying the provided requirements in a single invocation and without human guidance. Our approach is based on an existing linear programming-based fluence map optimization model that approximates dose-volume requirements using conditional value-at-risk (C-VaR) constraints. We show how the parameters of the C-VaR constraints can be used to control various metrics of treatment plan quality. A novel bi-criteria scoring based beam selection algorithm is developed which finds the best beam configuration at least ten times faster for real-life brain, prostate, and head and neck cases as compared to an exact mixed integer programming model. Patient anatomy changes due to breathing during the treatment of lung cancer need to be considered in treatment planning. To date, a single phase of the breathing cycle is typically selected for treatment and radiation is shut-off in other phases. We investigate optimization technology that finds optimal fluence maps for each phase of the breathing cycle by considering the overall dose delivered to a patient using image registration algorithms to track target structures and organs at risk. Because the optimization exploits the opportunities provided in each phase, better treatment plans are obtained. The improvements are shown on a real-life lung case. VMAT is a recent radiation treatment technology which has the potential to provide treatments in less time compared to other delivery techniques. This enhances patient comfort and allows for the treatment of more patients. We build a large-scale mixed-integer programming model for VMAT treatment plan optimization. The solution of this model is computationally prohibitive. Therefore, we develop an iterative MIP-based heuristic algorithm which solves the model multiple times on a reduced set of decision variables. We introduce valid inequalities that decrease solution times, and, more importantly, that identify higher quality integer solutions within specified time limits. Computational studies on a spinal tumor and a prostate tumor case produce clinically acceptable results.
|
2 |
Dosimetric Consequences of the Parotid Glands Using CT-To-CBCT Deformable Registration During IMRT For Late Stage Head And Neck CancersUnknown Date (has links)
Patients receiving Intensity Modulated Radiation Therapy (IMRT) for late stage head and neck (HN) cancer often experience anatomical changes due to weight loss, tumor regression, and positional changes of normal anatomy (1). As a result, the actual dose delivered may vary from the original treatment plan. The purpose of this study was (a) to evaluate the dosimetric consequences of the parotid glands during the course of treatment, and (b) to determine if there would be an optimal timeframe for replanning. Nineteen locally advanced HN cancer patients underwent definitive IMRT. Each patient received an initial computerized tomography simulation (CT-SIM) scan and weekly cone beam computerized tomography (CBCT) scans. A Deformable Image Registration (DIR) was performed between the CT-SIM and CBCT of the parotid glands and Planning Target Volumes (PTVs) using the Eclipse treatment planning system (TPS) and the Velocity deformation software. A recalculation of the dose was performed on the weekly CBCTs using the original monitor units. The parameters for evaluation of our method were: the changes in volume of the PTVs and parotid glands, the dose coverage of the PTVs, the lateral displacement in the Center of Mass (COM), the mean dose, and Normal Tissue Complication Probability (NTCP) of the parotid glands. The studies showed a reduction of the volume in the PTVs and parotids, a medial displacement in COM, and alterations of the mean dose to the parotid glands as compared to the initial plans. Differences were observed for the dose volume coverage of the PTVs and NTCP of the parotid gland values between the initial plan and our proposed method utilizing deformable registration-based dose calculations. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
3 |
Dosimetric and Radiobiological Comparison of Forward Tangent Intensity Modulated Radiation Therapy (FT-IMRT) and Volumetric Modulated Arc Therapy (VMAT) for Early Stage Whole Breast CancerUnknown Date (has links)
Intensity Modulated Radiation Therapy (IMRT) is a well-known type of external beam radiation therapy. The advancement in technology has had an inevitable influence in radiation oncology as well that has led to a newer and faster dose delivery technique called Volumetric Modulated Arc Therapy (VMAT). Since the presence of the VMAT modality in clinics in the late 2000, there have been many studies in order to compare the results of the VMAT modality with the current popular modality IMRT for various tumor sites in the body such as brain, prostate, head and neck, cervix and anal carcinoma. This is the first study to compare VMAT with IMRT for breast cancer. The results show that the RapidArc technique in Eclipse version 11 does not improve all aspects of the treatment plans for the breast cases automatically and easily, but it needs to be manipulated by extra techniques to create acceptable plans thus further research is needed. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
4 |
Radiation Backscatter of ZirconiaLeghuel, Hatim A. January 2013 (has links)
No description available.
|
Page generated in 0.1131 seconds