• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 32
  • 27
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 242
  • 242
  • 55
  • 47
  • 47
  • 46
  • 46
  • 39
  • 32
  • 31
  • 30
  • 29
  • 27
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Aromatase inhibitors produce hypersensitivity in experimental models of pain : studies in vivo and in isolated sensory neurons

Robarge, Jason Dennis January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Aromatase inhibitors (AIs) are the current standard of care for the treatment of hormone receptor positive breast cancer in postmenopausal women. Nearly one-half of patients receiving AI therapy develop musculoskeletal toxicity that is characterized by joint and/or muscle pain and approximately one-fourth of patients discontinue their therapy as a result of musculoskeletal pain. Since there are no effective strategies for prevention or treatment, insight into the mechanisms of AI-induced pain is critical to improve treatment. However, there are few studies of AI effects in animal models of nociception. To determine whether AIs produce hypersensitivity in animal models of pain, I examined the effects of AI administration on mechanical, thermal, and chemical sensitivity in rats. The results demonstrate that (1) repeated injection of 5 mg/kg letrozole in male rats produces mechanical, but not thermal, hypersensitivity that extinguishes when drug dosing is stopped; (2) administering a single dose of 1 or 5 mg/kg letrozole in ovariectomized (OVX) rats also induces mechanical hypersensitivity, without altering thermal sensitivity and (3) a single dose of 5 mg/kg letrozole or daily dosing of letrozole or exemestane in male rats augments flinching behavior induced by intraplantar ATP injection. To determine whether the effects of AIs on nociceptive behaviors are mediated by activation or sensitization of peptidergic sensory neurons, I determined whether letrozole exposure alters release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons and from sensory nerve endings in rat spinal cord slices. No changes in basal, capsaicin-evoked or high extracellular potassium-evoked CGRP release were observed in sensory neuronal cultures acutely or chronically exposed to letrozole. Furthermore, letrozole exposure did not alter the ability of ATP to augment CGRP release from sensory neurons in culture. Finally, chronic letrozole treatment did not augment neuropeptide release from spinal cord slices. Taken together, these results do not support altered release of this neuropeptide into the spinal cord as mediator of letrozole-induced mechanical hypersensitivity and suggest the involvement of other mechanisms. Results from this dissertation provide a new experimental model for AI-induced hypersensitivity that could be beneficial in delineating mechanisms mediating pain during AI therapy.
242

Identification, kinetic and structural characterization of small molecule inhibitors of aldehyde dehydrogenase 3a1 (Aldh3a1) as an adjuvant therapy for reversing cancer chemo-resistance

Parajuli, Bibek 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / ALDH isoenzymes are known to impact the sensitivity of certain neoplastic cells toward cyclophosphamides and its analogs. Despite its bone marrow toxicity, cyclophos-phamide is still used to treat various recalcitrant forms of cancer. When activated, cyclo-phosphamide forms aldophosphamide that can spontaneously form the toxic phospho-ramide mustard, an alkylating agent unless detoxified by ALDH isozymes to the carbox-yphosphamide metabolite. Prior work has demonstrated that the ALDH1A1 and ALDH3A1 isoenzymes can convert aldophosphamide to carboxyphosphamide. This has also been verified by over expression and siRNA knockdown studies. Selective small molecule inhibitors for these ALDH isoenzymes are not currently available. We hypothe-sized that novel and selective small molecule inhibitors of ALDH3A1 would enhance cancer cells’ sensitivity toward cyclophosphamide. If successful, this approach can widen the therapeutic treatment window for cyclophosphamides; permitting lower effective dos-ing regimens with reduced toxicity. An esterase based absorbance assay was optimized in a high throughput setting and 101, 000 compounds were screened and two new selective inhibitors for ALDH3A1, which have IC50 values of 0.2 µM (CB7) and 16 µM (CB29) were discovered. These two compounds compete for aldehyde binding, which was vali-dated both by kinetic and crystallographic studies. Structure activity relationship dataset has helped us determine the basis of potency and selectivity of these compounds towards ALDH3A1 activity. Our data is further supported by mafosfamide (an analog of cyclo-phosphamide) chemosensitivity data, performed on lung adenocarcinoma (A549) and gli-oblastoma (SF767) cell lines. Overall, I have identified two compounds, which inhibit ALDH3A1’s dehydrogenase activity selectively and increases sensitization of ALDH3A1 positive cells to aldophosphamide and its analogs. This may have the potential in improving chemotherapeutic efficacy of cyclophosphamide as well as to help us understand better the role of ALDH3A1 in cells. Future work will focus on testing these compounds on other cancer cell lines that involve ALDH3A1 expression as a mode of chemoresistance.

Page generated in 0.0433 seconds