• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 2
  • 1
  • Tagged with
  • 57
  • 57
  • 17
  • 14
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rhabdovirotherapy Reduces the Risk of Metastatic Disease After Cancer Surgery by Enhancing Natural Killer Cell Function

Zhang, Jiqing January 2014 (has links)
In the present study, we characterized the ability of a novel oncolytic rhabdovirus - Maraba MG1 to boost Natural Killer (NK) cell activity. In tandem, we addressed the ability of this enhanced NK cell functionality to reduce the incidence of post-cancer surgery micrometastases. Due to the potential safety barriers associated with the use of a live virus immediately prior to surgery in cancer patients, we generated a single cycle replication virus (MG1-Gless) and UV-inactivated MG1 to stimulate NK cell function and reduce post-operative metastases. Our in vivo data demonstrate that significant NK cell activation and a similar level of reduction in postoperative tumor metastases was achieved with live MG1, MG1-Gless and UV-inactivated MG1, concluding that viral replication is important, but not necessary for NK cell activation. Mechanistically, we observed that dendritic cells (DCs) are necessary intermediates for MG1-induced NK cell activation. Finally, we characterized and compared a panel of UV-inactivated MG1 (2mins to 2hrs) to better understand the requirements for NK cell activation. Our results suggest that intact viral particle and cellular recognition and association are essential for NK cell mediated anti-tumor responses. These findings provide the preclinical rationale to develop safe and viable virotherapy-based interventional protocols that might reduce the risk of metastatic disease after cancer surgery.
12

Cellular, epigenitic, genetic and signalling alterations associated with RANK expression in bone-tropic breast cancer cells

Khogeer, Asim Abdulaziz Omar January 2016 (has links)
Bone metastases are a major cause of morbidity in patients of advanced breast cancer. Development of osteolytic bone metastasis depends on the interaction between malignant tumour cells and bone microenvironment. Receptor Activator of Nuclear Factor Kappa B (RANK) is a member of tumour necrosis factor (TNF) superfamily that is expressed by osteoclasts (the bone resorbing cells) and primary breast tumour cells. Previous studies demonstrated that RANK receptor and its ligand (RANKL) play an important role in bone remodelling, mammary gland development and immune system. RANKL was also found to serve as a chemotactic factor that facilitates breast tumour metastasis to bone. However, the role of the RANK receptor in breast cancer cell metastatic behaviour in bone is not fully understood. Therefore, the aim of this thesis was to explore the role of the RANK receptor in parental and bone-tropic breast cancer cell growth, motility and invasion, and assess these cells influence on breast cancer cell induced osteoclastogenesis. Functional studies in breast cancer cells showed that RANKL (100 - 300 ng/ ml) significantly enhanced parental human MDA-231 (MDA-231P) and mouse 4T1 breast cancer cell spreading within minutes. RANKL induced chemotactic cell migration of MDA-231P cells in vitro. I also found that RANKL significantly stimulated random and directional 2D and 3D cell migration of parental MDA-231P and bone-tropic (MDA-231BT) breast cancer cells in vitro. These effects were observed at concentrations (100 – 300 ng/ml) that were sufficient to induce osteoclast formation in the presence and absence of breast cancer cells in vitro. In contrast, high concentrations of RANKL (1000 ng/ ml) dramatically suppressed human MDA-231P breast cancer cell invasion in vitro. These data indicate that the RANK receptor in the breast cancer cell lines tested influences cancer cell spreading, migration and invasion in vitro. Thus, targeting RANK in tumour cells may be of value in the prevention of tumour burden associated with breast cancer bone metastasis. Mechanistic studies revealed that RANKL stimulated the phosphorylation of p38 kinase in human and mouse breast cancer cells. Interestingly, RANKL had no effect on NFᴋB, JNK and AKT pathways in parental human MDA-231 and mouse 4T1 breast cancer cells at concentrations up to 300 ng/ ml. These data implies that the RANK receptor modulates human and mouse breast cancer cell metastatic behaviour via p38 activation and independently of the NFᴋB and PI3K/AKT pathways. Silencing of the RANK receptor in the bone-tropic human breast cancer cells MDA- 231BT2 reduced directional cell migration without affecting cell viability and growth. Functional studies in osteoclast and breast cancer cell revealed that knockdown of RANK expression in both parental and bone-tropic human breast cancer cells significantly inhibited the ability of these cells to stimulate osteoclast formation. Although, I cannot exclude the possibility of the involvement of other signalling pathways downstream of the RANK receptor, these studies suggest that the RANK/P38 signalling in osteoclast and breast cancer cells contributes significantly to breast cancer cell behaviour in bone. Genetic analysis of the RANK gene in human parental and bone-tropic MDA-231 breast cancer cells showed a number of polymorphisms. One variant detected was found to be deleterious for the RANK protein. This variant changes the amino acid sequence from alanine to threonine (Ala ˃ Thr) and only appeared in the RANK gene in the parental human MDA-231P breast cancer cells. Moreover, of the four known RANK isoforms that were detected in the parental and bone-tropic breast cancer cells tested, two lacked the TRAF6 binding motifs associated with NFκB activation. All RANK isoforms detected on the bone-tropic MDA-231BT breast cancer cells expressed the P38 binding motifs. Altogether, these findings support the role of the RANK/P38 signalling pathway in breast cancer cell behaviour in bone. Epigenetic analysis in parental human MDA-231P breast cancer cells showed that continuous and long-term exposure to RANKL (10 and 100 ng/ ml) for up to 50 passages (approximately 120 days) did not induce epigenetic changes, particularly DNA methylation, in the RANK gene. However, I found DNA methylation changes in a set of genes that are known to be involved in cell development and regulation. The methylation status of the altered CpG loci either hypermethylated or hypomethylated are located at different parts in the CpG islands. Whole genome DNA methylation pattern of the bone-tropic breast cancer cells showed a number of genes that appeared in both bone-tropic variants are correlated with different biological function of the cells. I also found that long-term exposure of human MDA-231P to RANKL (100 ng/ ml) enhanced the ability of these cells to stimulate osteoclastogenesis in vitro. These data together indicate that long-term exposure to RANKL induces “boney” epigenetic changes in a set of genes that enhances breast cancer cell behaviour in bone. Overall, this thesis illustrated that the RANK receptor on human parental and bone-tropic breast cancer cells plays an important role in cell motility and ability of these cells to influence osteoclastogenesis and ultimately osteolysis. Therefore, agents that selectively target the RANK receptor may be of value in the treatment of both tumour burden and osteolytic bone disease associated with breast cancer. However, the role of the RANK receptor in bone metastasis will require further in vivo investigation.
13

Tyrosine Phosphorylation of p68 RNA Helicase Promotes Metastasis in Colon Cancer Progression

Liu, Chia Yi 18 June 2012 (has links)
The initiation of cancer metastasis usually requires Epithelial-Mesenchymal Transition (EMT), by which tumor cells lose cell-cell interactions and gain the ability of migration and invasion. Previous study demonstrated that p68 RNA helicase, a prototypical member of the DEAD-box RNA helicases, functions as a mediator to promote platelet-derived growth factor (PDGF)-induced EMT through facilitating nuclear translocation of β-catenin in colon cancer cells. In this context, p68 RNA helicase was found to be phosphorylated at the tyrosine 593 residue (referred as phosphor-p68) by c-Abl kinase, and this phosphorylation is required for the activation of β-catenin signaling and the consequent EMT. The phosphor-p68 RNA helicase-mediated EMT was characterized by the repression of an epithelial marker, E-cadherin, and the upregulation of a mesenchymal marker, Vimentin. E-cadherin, a major cell-cell adhesion molecule that is involved in the formation of adherens junctions, has been shown to sequester β-catenin at the cell membrane and thus inhibit its transcriptional activity. The functional loss of E-cadherin is the fundamental event of EMT. Despite the role of phosphor-p68 RNA helicase in regulating nuclear translocation of β-catenin, whether phosphor-p68 is involved in the regulation of E-cadherin remains unknown. Here, our data indicated that phosphor-p68 RNA helicase initiated EMT by transcriptional upregulation of Snail1, a master transcriptional repressor of E-cadherin. The data suggest that phosphor-p68 RNA helicase displaced HDAC1 from the chromatin remodeling MBD3:Mi-2/NuRD complex at the Snail1 promoter, thereby activating the transcription of Snail1. In the xenograft tumor model, abolishing the phosphorylation of p68 RNA helicase by the expression of Y593F mutant resulted in a significant reduction of metastatic potential in human colon cancer cells. Analyses in the colon cancer tissues also revealed that the tyrosine 593 phosphorylation level of p68 RNA helicase is substantially enhanced in the tumor tissues comparing to that in the corresponding normal counterparts, suggesting a correlation of phosphor-p68 and tumor progression. In conclusion, we showed that tyrosine phosphorylation of p68 RNA helicase positively correlated to the malignant status of colon cancer progression. The molecular basis behind this correlation could be partly through the transcriptional regulation of Snail1.
14

Micro-imaging characterization of mouse models of metastasis

Winkelmann, Christopher Todd, January 2005 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2005. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "December 2005" Includes bibliographical references.
15

RUNX transcription factors drive epithelial to mesenchymal transition in metastatic breast cancer cells

Ran, Ran January 2017 (has links)
In the UK, 12,000 patients die from metastatic breast cancer annually. There is therefore an urgent need to identify the molecules that cause metastasis. Recent work has revealed a role for the RUNX family of transcription factors in the development of metastatic breast cancer. The RUNX proteins form active transcription factor complexes when bound by the heterodimeric partner CBFβ to regulate the expression of metastatic genes. Previous work from our laboratory has demonstrated that knockdown of CBFβ resulted in a decreased invasion capacity of the metastatic breast cancer cell line MDA-MB-231. Three-dimensional culture of MDA-MB-231 cells revealed that loss of CBFβ induces a mesenchymal to epithelial transition (MET). The aim of this project was to determine the role of the RUNX/CBFβ complex in maintaining the mesenchymal phenotype of metastatic breast cancer cells. The data presented show that the phenotype changes were accompanied by changes in EMT marker-gene expression, including Snai2, MMP9, and MMP13. Induction of CBFβ in the CBFβ-knockdown cells remarkably restored both the invasive capacity and the mesenchymal phenotype. Further analysis revealed that maintenance of the mesenchymal phenotype was dependent upon both CBFβ-partner proteins, RUNX1 and RUNX2. Taken together the data presented in this thesis demonstrate that RUNX/CBFβ complexes drive the epithelial to mesenchymal transition (EMT) in breast cancer cells. These findings are likely to be important in the development of potential therapies to inhibit the metastatic spread of breast cancer.
16

Functional Analysis of the Tumor Metastasis Suppressor, NDRG1

Liu, Wen 01 May 2011 (has links) (PDF)
Metastasis suppressors regulate multiple steps during the process of dissemination of tumor cells from primary sites to distant organs, while they do not affect the growth of the primary tumor. Previously, we identified NDRG1 (N-myc downstream regulated gene 1) as a tumor metastasis suppressor gene and found that it is negatively involved in metastatic progression of prostate and breast cancers. To elucidate the molecular mechanism of NDRG1 function, we used the yeast two-hybrid system to identify proteins interacting with NDRG1. In the first part of this project, we demonstrate that NDRG1, interacts with the Wnt receptor, LRP6, followed by blocking of the Wnt signaling, and therefore, orchestrates a cellular network that impairs the metastatic progression of tumor cells in vitro and in animal model. We also found that restoring NDRG1 expression by a small molecule compound significantly suppressed the capability of otherwise highly metastatic tumor cells to thrive in circulation and distant organs in animal models. In addition, our analysis of clinical cohorts data indicate that Wnt+/NDRG-/LRP+ signature has a strong predictable value for recurrence-free survival of cancer patients. Collectively, we have identified NDRG1 as a negative master regulator of Wnt signaling during the metastatic progression, and therefore revealed a novel control mechanism of Wnt signaling in tumor progression. Previously, we identified the metastasis promoting transcription factor, ATF3, as a downstream target of NDRG1. Further analysis revealed that the KAI1 promoter contained a consensus binding motif of ATF3, suggesting a possibility that NDRG1 suppresses metastasis through inhibition of ATF3 expression followed by activation of KAI1 gene. In the second part of this project, we examine a possible link between two metastasis suppressor genes, NDRG1 and KAI1, through ATF3. We demonstrated that ectopic expression of NDRG1 was able to augment endogenous KAI1gene expression in prostate cancer cell lines, while silencing NDRG1 accompanied with significant decrease in KAI1 expression in vitro and in vivo. In addition, our results of ChIP analysis indicate that ATF3 indeed bound to the promoter of KAI1 gene. Importantly, our promoter-based analysis revealed that ATF3 modulated KAI1 transcription through cooperation with other endogenous transcription factor as co-activator (ATF3-JunB) or co-repressor (ATF3-NFêB). Moreover, loss of KAI1 expression significantly abrogated NDRG1-mediated metastatic suppression in vitro as well as in a spontaneous metastasis animal model, indicating that KA11 is a functional down-stream target of NDRG1 pathway. Our result of immunohistochemical analysis showed that loss of NDRG1 and KAI1 occurs in parallel as prostate cancer progresses. We also found that a combined expression status of these two genes serves as a strong independent prognostic marker to predict metastasis-free survival of prostate cancer patients. Taken together, our result revealed a novel regulatory network of two metastasis suppressor genes, NDRG1 and KAI1, which together concerted metastasis-suppressive activities through intrinsic transcriptional cascade.
17

The Regulation of Autophagy in YAP Mechanotransduction and Breast Cancer Metastasis

Chen, Wei January 2021 (has links)
Breast cancer metastasis of a variety of vital organs is a major cause of breast cancer mortality. Autophagy has a crucial role in the metastatic breast cancer progression. As a critical mechanotransducer in the Hippo signalling pathway, YAP regulates cell proliferation and promotes autophagy. Previous publications also demonstrated extracellular matrix could regulate the nucleo-cytoplasmic transport of YAP. However, how YAP signalling connects to the interplay of autophagy and mechanotransduction in breast cancer metastasis remains entirely unknown. Through rapamycin-induced autophagy on the metastatic triple negative breast cancer (TNBC) cells, we observed upregulated YAP transcriptional activity and YAP nuclear localization in TNBC. Thus, we reported that YAP nuclear localization regulates autophagy to promote TNBC metastasis. Culturing TNBC cells on PDMS plates with various matrix stiffness demonstrated that stiff matrix promoted the migration of metastatic breast cancer cells in a YAP-dependent mechanism. Therefore, we proposed that YAP mechanotransduction promotes the migration of metastatic breast cancer cells. Then, we advance in these directions by reporting autophagy-mediated YAP nuclear localization is regulated by the response to stiff matrix when TNBC cells were cultured on different matrix stiffness upon autophagy. In conclusion, we suggest autophagy and mechanotransduction mediates YAP nuclear localization together. These findings expand the unknown gap in the convergence of YAP mechanotransduction and autophagy in metastatic breast cancer. They suggest that metastatic breast cancer cells have the potential to exhibit different YAP signalling when they colonize on a secondary location with a distinct matrix stiffness from primary location. Our study further helped to understand YAP biology and the mechanism of breast cancer metastasis that will shed light on future YAP-targeting therapeutics for metastatic breast cancer. / Thesis / Master of Applied Science (MASc)
18

Protein deregulation associated with breast cancer metastasis

Chan, K.K., Matchett, K.B., McEnhill, P.M., Dakir, El-Habib, McMullin, M.F., El-Tanani, Y., Patterson, Laurence H., Faheem, A., Rudland, P.S., McCarron, P.A., El-Tanani, Mohamed 2015 May 1931 (has links)
No / Breast cancer is one of the most prevalent malignancies worldwide. It consists of a group of tumor cells that have the ability to grow uncontrollably, overcome replicative senescence (tumor progression) and metastasize within the body. Metastases are processes that consist of an array of complex gene dysregulation events. Although these processes are still not fully understood, the dysregulation of a number of key proteins must take place if the tumor cells are to disseminate and metastasize. It is now widely accepted that future effective and innovative treatments of cancer metastasis will have to encompass all the major components of malignant transformation. For this reason, much research is now being carried out into the mechanisms that govern the malignant transformation processes. Recent research has identified key genes involved in the development of metastases, as well as their mechanisms of action. A detailed understanding of the encoded proteins and their interrelationship generates the possibility of developing novel therapeutic approaches. This review will focus on a select group of proteins, often deregulated in breast cancer metastasis, which have shown therapeutic promise, notably, EMT, E-cadherin, Osteopontin, PEA3, Transforming Growth Factor Beta (TGF-β) and Ran.
19

Arsenic and Olfactomedin-1 Regulation of Epithelial to Mesenchymal Cell Transition (EMT) in Heart Valve Development

Lencinas Sanabria, Alejandro January 2012 (has links)
This dissertation centers on the study of epithelial to mesenchymal cell transition (EMT) in the heart model of valve development. EMT is a process used by specific cells to invade adjacent matrix in order to differentiate into a three-dimensional structure. The first section of the project includes a study on the effects of inorganic arsenic on EMT and therefore the environmental concerns produced by deleterious effects on EMT. The second section focuses on the discovery of an intrinsic regulator of EMT, olfactomedin-1 (OLFM1). The discovery of a novel regulator of EMT in the atrioventricular canal is interesting, by itself, as it allows us to better understand the intrinsic molecular regulation of EMT in valve formation of the heart. The activity of this protein, as a regulator of cell invasion, identifies an important checkpoint in EMT. Because OFLM1 is conserved across many species, including humans, it may be a common or shared regulator of all types of EMT including cancer. Therefore, OLFM1 represents a promising new target for an anti-cancer agent as well as a potential clinical inducer of EMT to repair congenital heart disease that include valve defects.
20

The identification and analysis of molecular biomarkers in the p53 tumour suppressor pathway that affect cancer progression in humans

Grawenda, Anna Maria January 2013 (has links)
The tumour suppressor p53 is at the centre of the signalling pathway that controls cellular processes crucial in tumourogenesis, cancer progression and tumour clearance. Alterations in the p53 pathway that lead to cancer progression can be good candidates for molecular biomarkers that would assist in the identification of patients with different prognoses, but also serve as good predictors of appropriate targeted therapies. Patient cohorts and cancer cell panels are utilised to seek associations with the attenuation of the p53 pathway and cancer progression. Firstly, the alternatively spliced transcript of the p53 inhibitor HDMX, which is frequently found in tumours with poor prognosis, is studied. The high ratio of the alternatively spliced HDMX-S transcript over the full-length HDMX-FL transcript (HDMX-S/FL) is demonstrated to associate with p53 pathway attenuation in cancer cells and breast carcinomas, and with faster metastatic progression of osteosarcoma and breast cancer patients. Secondly, inherited polymorphism in the HDMX gene is investigated and demonstrated as a unique and highly reproducible eQTL, which identifies patients with different prognoses for metastatic disease in breast cancer and melanoma cohorts. Lastly, a screening approach to identify novel inherited polymorphisms in the p53 pathway genes that associate with metastatic progression of melanoma is developed and implemented, and subsequently in silico and in vitro functional analyses are performed to investigate a mechanism behind the FOXO3 SNP, identified as the strongest candidate, whereby the experimental evidence demonstrate that the causal SNP in the FOXO3 haplotype is controlled by the GATA3 transcription factor. Together, the work presented in this thesis provides strong support for the role of the p53 pathway in the metastatic progression of cancer, and suggests that molecular biomarkers that can detect changes in the activity of p53 pathway genes could offer a robust set of biomarkers for cancer progression applicable to different types of cancer.

Page generated in 0.2032 seconds