• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 3
  • 2
  • 1
  • Tagged with
  • 58
  • 58
  • 17
  • 14
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

CSF1 DRIVEN TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL ALTERATIONS IN MYELOID CELLS PROMOTE METASTATIC TUMOR PROGRESSION

Mathsyaraja, Haritha 21 August 2014 (has links)
No description available.
42

Selective permeabilisation of the blood-brain barrier at sites of metastasis

Connell, John J. January 2014 (has links)
Over one in five cancer patients will develop brain metastases and prognosis remains poor. Effective chemotherapeutics for primary systemic tumours have limited access to brain metastases owing to the blood-brain barrier (BBB). The aim of this study was to develop a strategy for specifically permeabilising the BBB at sites of cerebral metastases. Tumour necrosis factor was injected intravenously into mouse models of haematogenously induced brain metastasis. BBB permeability was assessed through histology and in vivo MRI and SPECT. Tumour burden and neuroinflammation were assessed after injection of TNF with Caelyx or a novel therapeutic. Mechanism of permeabilisation was investigated through histology and receptor-specific agonist antibodies. Administration of TNF dose-dependently permeabilised the BBB to exogenous tracers selectively at sites of brain metastasis, with peak effect after six hours. Metastasis-specific uptake of radiolabelled trastuzumab was also demonstrated following systemic cytokine administration. Administration of liposomal doxorubicin formulations in conjunction with TNF reduced tumour burden and mean metastasis size. Localised expression of TNFR1 was evident on the vascular endothelium associated with brain metastases. Human brain metastases displayed a similar TNF receptor profile compared to the mouse model. These findings describe a new approach to selectively permeabilise the BBB at sites of brain metastases, thereby enabling detection of currently invisible micrometastases and facilitating tumour-specific access of chemotherapeutic agents. We hypothesize that this permeabilisation works primarily though TNFR1 activation and, owing to the similar TNFR1 expression profiles in mouse models and human condition, the strategy has the potential for clinical translation.
43

New C-C chemokine receptor type 7 antagonists

Ahmed, Mohaned S. A. January 2016 (has links)
Chemokines are chemotactic cytokines which play an important role in the migration of immune cells to distant tissues or compartments within tissues. These proteins have also been demonstrated to play a major role in cancer metastasis. The C-C chemokine receptor type 7 (CCR7) is a member of the chemokine receptor family. CCR7 along with its ligands CCL19 and CCL21 plays an important role in innate immune response by trafficking of lymphocytes. In cancer, tumour cells expressing CCR7 migrate to lymphoid organs and thus disseminate to other organs. Neutralizing the interactions between CCL21/CCR7 would therefore be expected to inhibit the progression and metastasis of many different types of cancer to regional lymph nodes or distant organs. Our objective was to identify a potent small molecule antagonist of CCR7 as a prelude to the investigation of the role of this axis in cancer metastasis. In this study, we provided a brief description of chemokines and their role in health and disease with an emphasis on the CCR7/CCL19/CCL21 axis, as well as identification of a CCR7 antagonist “hit”. The potency of the CCR7 antagonist “hit” was optimised by synthesizing different CCR7 antagonist analogues. The “hit” optimization process has led to discover the most active compound amongst a series of different analogues which have the ability to bind and block CCR7 receptor. The efficacy of the most active compound and other analogues were evaluated in vitro using a calcium flux assay which is based on detecting fluorescent light emitted upon release of calcium ions. To identify a suitable cell line, which expresses CCR7 and capably respond to it, amongst a panel of cell lines for in vitro assessment of potency of synthesised compounds, we used Western blot assay and later by flow cytometry assay. The activity and selectivity of the most effective compound against CCR7 receptor was evaluated in vitro by other functional assays such as “configured agarose spot assay” and scratch assay. We first configured the existing under agarose assay to fulfil our requirements and then used it to assess activity and selectivity of compounds. The configured agarose spot assay also describes the application of the agarose spot for evaluation of cells chemotactic response to multiple chemokines under identical experiment conditions.
44

Large-scale identification of functional genes regulating cancer cell migration and metastasis using the self-assembled cell microarray

Zhang, Hanshuo 20 September 2013 (has links)
Metastasis is one of the critical hallmarks of malignancy tumor and the principal cause of death in patients with cancer. Cell migration is the basic and essential step in cancer metastasis process. To systematically investigate functional genes regulating cell migration and cancer metastasis on large scale, we developed a novel on-chip method, SAMcell (self-assembled cell microarray). This method was demonstrated to be particularly suitable for loss-of-function high-throughput screening because of its unique advantages. The first application of SAMcell was to screen human genome miRNAs, considering that more and more miRNAs had been proved to govern cancer metastasis. We found that over 20 % of miRNAs have migratory regulation activity in diverse cell types, indicating a general involvement of miRNAs in migratory regulation. Through triple-round screenings, we discovered miR-23b, which is down-regulated in human colon cancer samples, potently mediates the multiple steps of metastasis, including cell motility, cell growth and cell survival. In parallel, the second application of SAMcell was to screen human genome kinase genes, considering that more and more kinase genes had become successful diagnostic marker or drug targets. We found over 11% migratory kinase genes, suggesting the important role of kinase group in metastasis regulation. Through both functional screening and bioinformatics analysis, we discovered and validated 6 prospective metastasis-related kinase genes, which can be new potential targets in cancer therapy. These findings allow the understanding of regulation mechanism in human cancer progression, especially metastasis and provide the new insight into the biological and therapeutical importance of miRNAs or kinases in cancer.
45

The Differential Regulation of Transfer RNA in Higher Eukaryotes and Their Emerging Role in Malignancy

Pinkard, Otis William, III 26 May 2023 (has links)
No description available.
46

Genomic approaches to determine genes that regulate breast cancer metastatic dormancy and relapse

Elkholi, Islam 06 1900 (has links)
Les cellules cancéreuses du sein se disséminent du site primaire aux organes secondaires, où elles restent dormantes pendant des mois, voire des années. Cette période de dormance se traduit par une latence clinique entre la résection chirurgicale des tumeurs mammaires primitives et le diagnostic d'une rechute métastatique chez environ 30 % des patientes atteintes d'un cancer du sein. Les mécanismes de survie et de croissance ultérieure de ces cellules tumorales disséminées (CTD) dormantes restent largement inconnus, ce qui entrave la prise en charge clinique des patientes concernés. Des facteurs intrinsèques et extrinsèques dictent le destin et le comportement des DTC dans les organes secondaires. Notre travail dans les chapitres deux et trois visait à révéler les gènes et les voies de signalisation contribuant au devenir du DTC en ce qui concerne les deux catégories de facteurs. Dans le chapitre deux, nous avons exploité les sous-lignées de cancer du sein murin 4T07 et 4T1 qui modélisent les deux destins de rester dormant ou de se transformer en métastases visibles, respectivement, après dissémination spontanée à partir de la tumeur mammaire primaire. Nous avons appliqué un pipeline de criblage CRISPR à l'échelle du génome pour explorer les dépendances génétiques différentielles des deux lignées, c’est à dire leur réseau de signalisation intrinsèquement différent. En comparaison avec les cellules sujettes à la dormance, les cellules métastatiques démontrent une activité PI3K de classe I élevée. Contre-intuitivement, les cellules sujettes à la dormance affichent une activité mTORC1 plus élevée qui pourrait être attribuée à un positionnement lysosomal périphérique constant. Le blocage de ce positionnement périphérique a réduit la charge des DTC dans les poumons et l'incidence des métastases visibles, ce qui suggère qu'il pourrait s'agir d'un mécanisme de survie médicamenteux pour les DTC du sein. Dans le chapitre trois, nous avons effectué un criblage CRISPR in vivo à l'échelle du génome dans des cellules sujettes à la dormance, ce qui a mené à l’identification du gène non caractérisé Mob3c comme un régulateur potentiel de la dormance. Le niveau d'expression de Mob3c dans les modèles de dormance par rapport à ses homologues prolifératifs a soutenu la prédiction du criblage selon laquelle Mob3c pourrait être un suppresseur de métastases. Des cribles basés sur la protéomique et des tests d'interactions protéine-protéine ont suggéré que MOB3C interagit avec le complexe endonucléase RNase P, qui catalyse différentes fonctions cellulaires essentielles, y compris la maturation de l'ARNt. Les analyses cliniques axées sur les rechutes métastatiques (c'est-à-dire la survie sans métastases à distance et sans progression) chez les patientes atteintes d'un cancer du sein ont validé les résultats précliniques décrits dans les deux chapitres, soutenant une signification et un impact potentiels des connaissances moléculaires révélées. / Breast cancer cells disseminate from the primary site to secondary organs, where they remain dormant for months to years. This dormancy period is reflected in a clinical latency between the surgical resection of the primary breast tumors and diagnosing a metastatic relapse in about 30% of breast cancer patients. Mechanisms of survival and subsequent outgrowth of these dormant disseminated tumor cells (DTCs) remain largely unknown, hence hindering clinical management of affected patients. Intrinsic and extrinsic factors dictate the fate and behavior of DTCs in secondary organs. Our work in chapters two and three aimed at revealing genes and pathways contributing to the DTC fate with respect to the two categories of factors. In chapter two, we leveraged the 4T07 and 4T1 murine breast cancer sublines that model the two fates of either remaining dormant or outgrowing into visible metastases, respectively, after spontaneous dissemination from the primary mammary tumor. We applied a genome wide CRISPR screening pipeline to explore the differential genetic dependencies of the two lines, hence their intrinsically different signaling wiring. In comparison to the dormancy-prone cells, metastatic cells display high class I PI3K activity. Counterintuitively, dormancy-prone cells display higher mTORC1 activity that could be attributed to a constant peripheral lysosomal positioning. Blocking this peripheral positioning reduced the DTC burden in the lungs and the incidence of visible metastases, suggesting that this might be a druggable survival mechanism for breast DTCs. In chapter three, we carried out an in vivo genome-wide knockout CRISPR screen in dormancy-prone cells, that put forward the uncharacterized gene, Mob3c, as a potential pro-dormancy gene. Mob3c expression level in models of dormancy in comparison with proliferative counterparts, supported the screen prediction of Mob3c potentially being a metastasis suppressor. Proteomics-based screens and protein-protein interaction assays suggested that MOB3C interacts with the endonuclease RNase P complex, that catalyzes different essential cellular functions including tRNA maturation. Metastatic relapse-focused clinical analyses (i.e., distant metastasis- and progression-free survival) in breast cancer patients validated the outlined preclinical findings in the two chapters, supporting a potential significance and impact of the revealed molecular insights.
47

New C-C Chemokine Receptor Type 7 Antagonists

Ahmed, Mohaned S.A. January 2016 (has links)
Chemokines are chemotactic cytokines which play an important role in the migration of immune cells to distant tissues or compartments within tissues. These proteins have also been demonstrated to play a major role in cancer metastasis. The C-C chemokine receptor type 7 (CCR7) is a member of the chemokine receptor family. CCR7 along with its ligands CCL19 and CCL21 plays an important role in innate immune response by trafficking of lymphocytes. In cancer, tumour cells expressing CCR7 migrate to lymphoid organs and thus disseminate to other organs. Neutralizing the interactions between CCL21/CCR7 would therefore be expected to inhibit the progression and metastasis of many different types of cancer to regional lymph nodes or distant organs. Our objective was to identify a potent small molecule antagonist of CCR7 as a prelude to the investigation of the role of this axis in cancer metastasis. In this study, we provided a brief description of chemokines and their role in health and disease with an emphasis on the CCR7/CCL19/CCL21 axis, as well as identification of a CCR7 antagonist “hit”. The potency of the CCR7 antagonist “hit” was optimised by synthesizing different CCR7 antagonist analogues. The “hit” optimization process has led to discover the most active compound amongst a series of different analogues which have the ability to bind and block CCR7 receptor. The efficacy of the most active compound and other analogues were evaluated in vitro using a calcium flux assay which is based on detecting fluorescent light emitted upon release of calcium ions. To identify a suitable cell line, which expresses CCR7 and capably respond to it, amongst a panel of cell lines for in vitro assessment of potency of synthesised compounds, we used Western blot assay and later by flow cytometry assay. The activity and selectivity of the most effective compound against CCR7 receptor was evaluated in vitro by other functional assays such as “configured agarose spot assay” and scratch assay. We first configured the existing under agarose assay to fulfil our requirements and then used it to assess activity and selectivity of compounds. The configured agarose spot assay also describes the application of the agarose spot for evaluation of cells chemotactic response to multiple chemokines under identical experiment conditions.
48

Identification of a phospho-hnRNP E1 Nucleic Acid Consensus Sequence Mediating Epithelial to Mesenchymal Transition

Brown, Andrew S. 27 July 2015 (has links)
No description available.
49

The mesenchymal-like phenotype of metastatic breast cancer is maintained by the transcription factor RUNX1

Ariffin, Nur Syamimi January 2017 (has links)
Breast cancer is the most prevalent cancer in women in the UK with over 50,000 new cases diagnosed each year. Almost all breast cancer deaths are due to metastatic disease. The RUNX1-CBFbeta transcription factor complex has been implicated in the development of human breast cancer and recent evidence from our laboratory indicated that it might have a role in metastasis. The aim of this project was therefore to determine the role of the RUNX1 transcription factor in breast cancer metastasis. Initial experiments to knockdown RUNX1 by shRNA also decreased the expression of RUNX2. Therefore, due to the off-target effect of shRUNX1, CRISPR-Cas9n was used to establish a RUNX1-negative cell line by targeting the first exon of the RUNX1 gene. Migration and invasion capacity of the cells decreased in the absence of RUNX1 and it was comparable to the absence of RUNX2 and CBFbeta respectively, which are known to play roles in migration and invasion of MDA-MB-231 cells. The cells also formed spherical clusters in 3D culture which was associated with the changes in cell morphology from stellate to round shape in the absence of RUNX1. The expression of the metastasis-related genes MMP13, MMP9, OPN and SLUG also decreased in parallel with the loss of the mesenchymal-like phenotype whilst the expression of the epithelial markers cytokeratin, desmoplakin and E-cadherin increased concomitantly. Importantly, re-expression of RUNX1 in the RUNX1-negative cell lines using an inducible expression system rescued migration and invasion. Therefore, RUNX1 is required to maintain the mesenchymal-like phenotype of MDA-MB-231 cells and hence is important for the epithelial to mesenchyme transition (EMT), a key characteristic of metastatic cells. The transcription factor SLUG is a known regulator of EMT. Data obtained shows that RUNX1 down-regulates the expression of SLUG. ChIP analysis demonstrated that RUNX1 was bound to the SLUG promoter and RUNX1 was subsequently shown to activate the promoter activity. Finally, experiments to inhibit the activity of the RUNX transcription factors pharmacologically showed changes in cell differentiation and also affected cell viability, possibly by off-target effects. Taken together, data presented in this work demonstrates that RUNX1 is required for EMT in the metastatic breast cancer cells and it is therefore a potential therapeutic target to prevent breast cancer metastasis.
50

Adhesion and transendothelial migration of cancer cells / Adhésion et migration transendothéliale des cellules tumorales

Sundar Rajan, Vinoth Edal Joseph 04 July 2016 (has links)
Les métastases sont responsables de 90 % des décès causés par le cancer. Les métastases sont des foyers cancéreux secondaires qui se forment à distance de la tumeur d’origine. Des cellules cancéreuses quittent la tumeur primaire, rejoignent la circulation sanguine puis colonisent des organes voisins par migration à travers l’endothélium vasculaire. Ce phénomène d’adhésion à l’endothélium et de migration à travers l’endothélium appelé l’extravasation est une étape clé du processus métastatique. L’identification des molécules impliquées constitue une priorité dans le but d’élaborer de nouvelles drogues anticancéreuses. Nous avons précédemment montré que la molécule d’adhésion cellulaire InterCellular Adhesion Molecule-1 (ICAM-1) exprimée par les cellules endothéliales, est impliquée dans l’interaction des cellules de cancer de la vessie (BCs) avec l’endothélium. Cependant les ligands d’ICAM-1 n’ont pas été étudiés. Dans cette étude, nous utilisons des tests d'adhésion cellulaire et la microscopie à force atomique (AFM) afin d’identifier les ligands d’ICAM-1 et de mesurer les forces impliquées dans l’interaction ligand-ICAM-1. Nous avons identifié que les protéines MUC1 et CD43 exprimées par les BCs les plus invasives se lient à ICAM-1 en développant des forces d’intensité différente selon le couple considéré. Une analyse détaillée des événements de rupture suggère que CD43 est fortement lié au cytosquelette et que son interaction avec ICAM-1 correspond principalement à des sauts brusques. Au contraire, MUC1 semble être lié faiblement au cytosquelette et ses interactions avec ICAM-1 sont principalement associées à la formation de filaments membranaires ou « tethers ». Les forces mises en jeu lors de la migration des cellules cancéreuses à travers l'endothélium ont été étudiées par microscopie de forces de traction (TFM). Les résultats préliminaires montrent que les tractions exercées par les cellules cancéreuses lors de l’extravasation sont mesurables par TFM. / Cancer metastasis is associated with 90% cancer-associated deaths, when cancer cells escape from the primary tumor and form metastatic colonies in secondary sites. Extravasation is an important step in cancer metastasis, where cancer cells carried in blood, adhere and transmigrate through the endothelium. Therefore identifying the key molecules involved during the adhesion process could enable to develop new anticancer cancer drugs able to inhibit the adhesion of cancer cells to the endothelium. We have previously shown that InterCellular Adhesion Molecule-1 (ICAM-1) expressed by endothelial cells is involved in the interactions of bladder cancer cells (BCs) with the endothelium. However the ICAM-1 ligands have never been investigated. In this study, we combined adhesion assays and Atomic Force Microscopy (AFM) to identify the ligands involved and to quantify the forces relevant in such interactions. We report the expression of MUC1 and CD43 on BCs and demonstrate that these ligands interact with ICAM-1 to mediate cancer cell-endothelial cell adhesion in the case of the more invasive BCs. AFM experiments were performed to quantify the force ranges involved by MUC1 and CD43 during their interaction with ICAM-1. AFM measurements combined with a Gaussian Mixture Model showed distinct force ranges for the interaction of ICAM-1 with MUC1 and ICAM-1 with CD43. Furthermore, a detailed analysis of the rupture events suggests that CD43 is strongly connected to the cytoskeleton and that its interaction with ICAM-1 mainly corresponds to force ramps followed by sudden jumps. On the contrary, MUC1 seems to be weakly connected to the cytoskeleton as its interactions with ICAM-1 are mainly associated with the formation of tethers. The forces involved during the transmigration of cancer cells through the endothelium was investigated using Traction Force Microscopy (TFM). Preliminary results showed that tractions exerted by cancer cells during transmigration can be studied and quantified using TFM.

Page generated in 0.1669 seconds