• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 17
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 171
  • 171
  • 28
  • 25
  • 24
  • 23
  • 18
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Racial disparities in the treatment of black women with breast cancer in the United States

Urbach, Haley 14 June 2019 (has links)
Breast cancer affects over three million women in the United States, but this disease burden is not shared equally across all races. Black women, in particular, are diagnosed with more advanced cancer at a younger age and experience a disproportionately high mortality rate compared to white women. Factors that contribute to such disparity include socioeconomic status, tumor biology, age, insurance status, comorbidities, obesity, patients’ reproductive history and barriers to quality care. These factors alone, however, do not account for all the racial differences in mortality and outcomes experienced by black women. There is a growing body of literature that indicates black women are not receiving the same treatment and care as white women. Black women are less likely to receive surgery, radiation therapy, hormone therapy and targeted therapy than white women. Black women are also more likely to experience delays in the initiation of treatment, early discontinuation of treatment and overall guideline non-concordant care. The current literature has presented widespread racial disparities in the treatment of black women with breast cancer. Future research needs to focus on tangible interventions such as physician bias training and patient navigators to mitigate the inequity of care in the treatment of breast cancer.
82

HGF/Met-mediated Phosphorylation of Stathmin1 Serine 16 Regulates Cell Proliferation and not Metastasis

Deford, Paul 23 August 2022 (has links)
No description available.
83

Investigating the Applications of Electroporation Therapy for Targeted Treatment of Glioblastoma Multiforme Based on Malignant Properties of Cells

Ivey, Jill Winters 05 September 2017 (has links)
Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer with an average survival time of 15 months. GBM is considered incurable with even the most aggressive multimodal therapies and is characterized by near universal recurrence. Irreversible electroporation (IRE) is a cellular ablation method currently being investigated as a therapy for a variety of cancers. Application of IRE involves insertion of electrodes into tissue to deliver pulsed electric fields (PEFs), which destabilize the cell membrane past the point of recovery, thereby inducing cell death. While this treatment modality has numerous advantages, the lack of selectivity for malignant cells limits its application in the brain where damage to healthy tissue is especially deleterious. In this dissertation we hypothesize that a form of IRE therapy, high-frequency IRE (H-FIRE), may be able to act as a selective targeted therapy for GBM due to its ability to create an electric field inside a cell to interact with altered inner organelles. Through a comprehensive investigation involving experimental testing combined with numerical modeling, we have attained results in strong support of this hypothesis. Using tissue engineered hydrogels as our platform for therapy testing, we demonstrate selective ablation of GBM cells. We develop mathematical models that predict the majority of the electric field produced by H-FIRE pulses reach the inside of the cell. We demonstrate that the increased nuclear to cytoplasm ratio (NCR) of malignant GBM cells compared to healthy brain—evidenced in vivo and in in vitro tissue mimics—is correlated with greater ablation volumes and thus lower electric field thresholds for cell death when treated with H-FIRE. We enhance the selectivity achieved with H-FIRE using a molecularly targeted drug that induces an increase in NCR. We tune the treatment pulse parameters to increase selective malignant cell killing. Finally, we demonstrate the ability of H-FIRE to ablate therapy-resistant GBM cells which are a focus of many next-generation GBM therapies. We believe the evidence presented in this dissertation represents the beginning stages in the development of H-FIRE as a selective therapy to be used for treatment of human brain cancer. / Ph. D.
84

An immunohistopathological and functional investigation of β3 integrin antagonism as a therapeutic strategy in cancer. Characterisation, development, and utilisation of preclinical cancer models to investigate novel ¿3 integrin anatgonists.

Alshammari, Fatemah O.F.O. January 2013 (has links)
Tumour cell dissemination is a major issue with the treatment of cancer, thus new therapeutic strategies which can control this process are needed. Antagonism of integrins highly expressed in tumours is one potential strategy. The integrins are transmembrane glycoprotein adhesive receptors. Two of the integrins, αVβ3 and αIIbβ3, are highly expressed in a number of tumours and induce bi-directional signalling through their interaction with extracellular matrix proteins, and growth factor receptors. Through this signalling they play an important role in a number of cellular processes that are involved in tumour dissemination such as tumour growth, migration, invasion, metastasis and angiogenesis. Dual αIIbβ3 and αVβ3 integrin antagonism will have a direct effect on β3-expressing tumour cells that leads to the inhibition of cell migration and dissemination. Furthermore, through targeting tumour cell interaction with endothelial cells and platelets, this will also lead to inhibition of angiogenesis and metastasis. The aim of this project was to characterise the expression of αVβ3 and αIIbβ3 integrin in a panel of tumour cell lines and in human tumour xenograft samples, and to develop and utilise cell-based models to investigate potential novel β3 antagonists. The expression of αV and β3 subunits was detected in xenograft tissue using immunoblotting techniques. A panel of cell lines of different tumour types including melanoma, prostate, breast, colon and non small cell lung carcinoma was then characterised for αVβ3 and αIIbβ3 integrin expression using immunoblotting and immunocytochemistry. Melanoma cell lines demonstrated the strongest αVβ3 expression. No αIIbβ3 integrin expression was seen in any of the cell lines evaluated. A selection of cell lines with varying αVβ3 expression were then used to develop a functional test for cell migration, the scratch wound healing assay. Migration of tumour cells that expressed αVβ3 integrin was inhibited by the known β3 antagonists, cRGDfV peptide and LM609 antibody. A panel of 12 potential novel β3 integrin antagonists was screened for cytotoxicity and activity in the validated scratch assay. ICT9055 was the most effective antagonist in inhibition of M14 cell migration as determined by the scratch assay, with an IC50 of < 0.1 µM. Therefore the work presented in this thesis has established models and tools for evaluating potential novel β3 integrin antagonists, and identified a promising molecule to progress for further preclinical evaluation. / Public Authority for Applied Education and Training (PAAET)
85

Evaluating Lactobacillus Acidophilus as a Model Organism for Co-Culture Cancer Studies

Mikhail, Samuel A 01 January 2019 (has links)
The causality dilemma between dysbiosis and cancer has given rise to numerous studies both exploring the mechanisms behind cancer progression and the associative shifts in the microbiota upon carcinogenesis. Aside from the hallmark study of Dr. Barry Marshall in establishing the true causal relationship between Helicobacter pylori and gastric adenocarcinoma, studies have only been successful in adding associative links of carcinogenesis mediated by bacteria to the literature. The current field is limited in its ability to establish causative relationships, and further work is needed to construct a reference community whose physiological responses reflect global community responses. In this thesis, the organism Lactobacillus acidophilus was selected as a pilot strain for the development of a novel framework to establish the fitness and physiological changes that occur when bacteria engage the human epithelial environment. The pilot strain was revived from the American Type Culture Collection (ATCC), verified through 16S rRNA Sanger sequencing, and grown in its conventional culture medium and human tissue culture medium to establish baseline growth rates and gauge its physiological responses to an in vitro tumor microenvironment. A set of standard conditions was proposed for growth under human tissue culture conditions. Finally, a metabolic study and spot plate assay were performed to elucidate the anabolic deficits and viability of this strain in human tissue culture medium, respectively. This research was performed to better understand the environmental and metabolic requirements for this pilot strain to inhabit the human epithelial environment, and to establish a workflow that will set the foundation for an appropriate clinical study to demonstrate the causative relationship between dysbiosis and carcinogenesis.
86

Nanoparticle-mediated cancer therapy for primary and metastasized tumors

Adjei, Isaac Morris 17 February 2014 (has links)
No description available.
87

NANOPARTICLE DRUG DELIVERY SYSTEMS FOR CANCER THERAPY

Yung, Bryant Chinung January 2014 (has links)
No description available.
88

Computational, Synthetic, Biochemical and Biological Studies and Characterization on STAT3 Inhibitors for Potential Anticancer Therapy

Yu, Wenying 04 September 2013 (has links)
No description available.
89

Probing the Magnetic Relaxation Dynamics and Optical Properties of Superparamagnetic Iron-Oxide (Fe3O4) Nanoparticles for Biomedical Applications

Sadat, Md Ehsan January 2015 (has links)
No description available.
90

Simultaneously targeting hypoxic cancer cells by hsp90 inhibitor and glycolysis inhibitor in pancreatic cancer therapy

Cao, Xianhua 08 March 2007 (has links)
No description available.

Page generated in 0.057 seconds