• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of PTEN Loss and Activated KRAS Overexpression on Viscoelasticity, Adhesion, and Mechanosensitivity of Breast Epithelial Cells

Linthicum, Will H. 08 August 2019 (has links)
Therapeutics targeting the PI3K (phosphatidylinositol 3-kinase) and the Ras/MAPK (mitogen-activated protein kinases) pathways have potential as non-toxic treatments for triple-negative breast cancer due to their frequent over-activation in several forms of cancer. Interestingly, the PI3K and Ras/MAPK pathways have been shown to incite cancer dormancy behavior individually and tumorigenic behavior in unison when induced in healthy breast epithelial cells (MCF-10A) in vivo. Tumorigenesis and metastasis are heavily reliant on the specific mechanical and adhesive properties of cells, including decreased stiffness, increased mechanosensitivity, and decreased adhesion. However, the describe cellular behaviors are poorly understood for dormant cancer phenotypes. Understanding the mechanical and adhesive behaviors of MCF-10A cells as a function of PI3K and/or Ras/MAPK pathway over-activation further explores the cross-talk enabling unique dormant and tumorigenic characteristics. Cellular viscoelasticity and adhesion were measured for MCF-10A cells with PTEN (phosphatase and tensin homolog) knockout and activated KRAS (Kristen rat sarcoma viral oncogene homolog) overexpression to activate the PI3K and Ras/MAPK pathways respectively with atomic force microscopy. PTEN knockout alone has no observable influence on cell adhesion but resulted in softer cells with less organized cytoskeleton. Activated KRAS overexpression increased cell stiffness and cell adhesion regardless of PTEN expression level. Moreover, the overexpression of activated KRAS enhanced the sensitivity of cells to the substrate stiffness. The findings suggest that the cancer-associated pathways PI3K and Ras/MAPK regulate cell adhesion and mechanics to promote tumor formation and metastasis. More importantly, the results that signify mutations of different molecular pathways associated with cancer dormancy regulate cell mechanics differently suggests that cell stiffness is a biomarker that detects and differentiates different types of dormant cancers.
2

Immunotherapy of Cancer: Reprogramming Tumor/Immune Cellular Crosstalk to Improve Anti-Tumor Efficacy

Payne, Kyle K. 01 January 2015 (has links)
Immunotherapy of cancer has been shown to be promising in prolonging patient survival. However, complete elimination of cancer and life-long relapse-free survival remain to be major challenge for anti-cancer therapeutics. We have previously reported that ex vivo reprogramming of tumor-sensitized immune cells by bryostatin 1/ionomycin (B/I) and the gamma-chain (γ-c) cytokines IL-2, IL-7, and IL-15 resulted in the generation of memory T cells as well as CD25+ NKT cells and CD25+ NK cells. Adoptive cellular therapy (ACT) utilizing these reprogrammed immune cells protected FVBN202 mice from tumor challenge, and overcame the suppressive functions of myeloid-derived suppressor cells (MDSCs). We then demonstrated that the presence of CD25+ NKT cells was required for anti-tumor efficacy of T cells as well as their resistance to MDSCs. Similar results were obtained by reprogramming of peripheral blood mononuclear cells (PBMC) from patients with early stage breast cancer, demonstrating that an increased frequency of CD25+ NKT cells in reprogrammed immune cells was associated with modulation of MDSCs to CD11b-HLA-DR+ immune stimulatory cells. Here, we tested the efficacy of immunotherapy in a therapeutic setting against established primary breast cancer (Chapter One), experimental metastatic breast cancer (Chapter Three) as well as against minimal residual disease (MRD) in patients with multiple myeloma (Chapter Two). We evaluated the ability of reprogrammed immune cells, including CD25+ NKT cells, to convert MDSCs to myeloid immune stimulatory cells, in vivo; this resulted in the identification and characterization of a novel antigen presenting cell (APC). These novel immune stimulatory cells differed from conventional APCs, including dendritic cells (DCs) and macrophages. We have also demonstrated that enhancing immunogenicity of mammary tumors by treatment with Decitabine (Dec) along with overcoming MDSCs by utilizing reprogrammed T cells and NKT cells in ACT prolongs survival of animals, but fails to eliminate the tumor. However, targeting cancer during a setting of MDR, when tumor cells are dormant, results in objective responses as evidenced in our multiple myeloma studies. This suggests that targeting breast cancer with immunotherapy following conventional therapies, in a setting of residual disease when tumor cells are dormant, may be effective in eliminating such residual cells or maintaining dormancy and extending time-to-relapse for breast cancer patients.
3

The Role of Rankl in Prostate Cancer Progression and Bone Metastasis

Chu, Chia-Yi 06 December 2011 (has links)
This study focused on the role of RANKL in prostate cancer EMT progression and metastasis. Activation of RANK, a receptor activator of NF-kB, by its ligand RANKL, in a paracrine manner is responsible for osteoclast differentiation and bone remodeling. RANK activation in cancer cells, however, is thought to be promoted by both autocrine and paracrine mechanisms because RANKL has been shown to be derived from either tumor or its microenvironment, such as osteoblasts, infiltrating inflammatory cells and stromal fibroblasts. In the present study, we demonstrated that autocrine and paracrine RANKL-RANK signaling could be responsible for driving prostate cancer bone metastasis by promoting epithelial to mesenchymal transition (EMT). We further characterized a novel converging RANKL-c-Met signaling network in which the activation of RANKL was found to promote the expression of both RANKL and c-Met in an autocrine manner in prostate cancer cells. The induced RANKL and c-Met in prostate cancer cells is biologically functional and contributes to increased osteoclastogenesis, epithelial to mesenchymal transition (EMT), cell motility, migration and invasion and conferred bone and soft tissue metastases. Remarkably, RANKL expression by 1,000 prostate cancer cells can provoke bone and soft tissue metastases of a “dormant” population of prostate cancer cells which by themselves failed to form tumors and colonize mouse skeleton, suggesting RANKL can serve as a factor in “reawakening” cancer dormancy to initiate the re-growth and metastasis of cancer cells. We also showed that RANKL-induced RANKL feed-forward autocrine regulation is mediated through cMyc transactivation, allowing the establishment of a “vicious cycle” further promoting prostate cancer growth and metastasis. The converging RANKL-c-Met signaling network is therefore a novel target that could be further manipulated for delaying the lethal progression of castration-resistant human prostate cancer bone metastasis.
4

PHARMACOLOGICAL TARGETING OF FGFR SIGNALING TO INHIBIT BREAST CANCER RECURRENCE AND METASTASIS

Saeed Salehin Akhand (8771426) 29 April 2020 (has links)
Breast cancer (BC) is one of the deadliest forms of cancers with high incidence and mortality rates, especially in women. Encouragingly, targeted therapies have improved the overall<br>survival and quality of life in patients with various subtypes of BC. Unfortunately, these first-line therapies often fail due to inherent as well as acquired resistance of cancer cells. Treatment evading cancer cells can exhibit systemic dormancy in patients over a long period of time without manifesting any symptoms. In a suitable environment, these undetected disseminated tumor cells can relapse in the form of metastasis. Therefore, it is essential to understand the mechanisms of<br><div>BC recurrence and to develop durable therapeutic interventions to improve patient’s survival. In this dissertation work, we studied fibroblast growth factor receptors (FGFR), as therapeutic targets to treat the recurrence of drug-resistant and immune-dormant BC metastasis. <br></div><div><br></div><div>The HER2 subtype of BC is characterized by the overexpression of human epidermal growth factor receptor 2 (HER2), which drives elevated downstream signaling promoting tumorigenesis. Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate in which an anti-HER2 antibody targets HER2 overexpressing tumor cells and delivers a highly potent microtubule inhibitor. Using novel models of minimal residual disease (MRD) following T-DM1 treatments, we found that epithelial to mesenchymal transition is a critical process for cells to persist the TDM1 treatments. The upregulation of FGFR1 may facilitate insensitivity to T-DM1. Our data also showed that FGFR1 overexpression in HER2+ tumors leads to a higher incidence of recurrence, and these recurrent tumors show sensitivity towards covalent inhibition of FGFR. <br></div><div><br></div><div>In addition to drug-induced MRD in the primary tumor sites, disseminated tumor cells (DTCs) can demonstrate dormant phenotype via maintaining an equilibrium with immunemediated tumor clearance. Factors affecting such equilibrium may contribute to the recurrence of breast cancers metastasis. We show that such immune-mediated dormancy can be modeled with the 4T07 tumors. These tumors display immune-exclusion phenotypes in metastatic pulmonary organs. The inhibition of FGFR modulates the immune cell compositions of pulmonary organs favoring anti-tumor immunity. However, inhibition of FGFR may also affect T cell receptor downstream signaling, resulting in the inhibition of cytolytic T cell’s function. Finally, we report that combination therapy using the FGFR kinase inhibitor and an immune checkpoint blockade showed effective targeting of metastatic 4T07 tumors. <br></div><div><br></div><div>FGFR signaling as a therapeutic target in various tumors has been an active focus of cancer research. In this dissertation work, we have expanded our understanding of the role of FGFR in the recurrence of drug-resistant breast cancers as well as in the maintenance of an immune evasive microenvironment promoting pulmonary growth of tumors. Moreover, we presented evidence that it is possible to repurpose FGFR targeted therapy alone or in combination with checkpoint blockades to target recurrent metastatic BCs. In the future, our novel models of minimal residual diseases and systemic immune dormancy may act as valuable biological tools to expand our understanding of the minimal residual disease and dormant tumor cells.</div>

Page generated in 0.0597 seconds