Spelling suggestions: "subject:"candida antarctic 1ipase B (CALB)"" "subject:"candida antarctic fipase B (CALB)""
1 |
Modélisation moléculaire de l'acétylation de la quercétine par des lipases : étude des interactions enzyme-substrat / Molecular Modeling of Quercetin Acetylation by Lipases : Study of Enzyme-Substrate InteractionsBidouil, Christelle 13 November 2012 (has links)
La quercétine (QCT) est un composé polyphénolique d'origine végétale connu pour ses activités antioxydantes et ses effets bénéfiques sur la santé. Sa solubilité, sa stabilité, sa biodisponibilité et ses activités biologiques peuvent être améliorées par une acylation sélective de ses groupements hydroxylés. Ce travail vise à étudier la possibilité d'une acétylation enzymatique de la QCT par la lipase B de Candida antarctica (CALB), la lipase la plus exploitée industriellement pour des estérifications régio- et énantiosélectives. Dans une perspective d'ingénierie rationnelle de l'enzyme, une démarche de modélisation moléculaire est mise en oeuvre pour mieux comprendre les interactions qui régissent le positionnement et l'orientation du substrat dans le site actif de la lipase. Dans une première partie expérimentale, l'absence d'activité d'acétylation de la CALB envers la QCT, en présence d'un excès d'acétate de vinyle, a été confirmé. Dans une seconde partie, cette inactivité de la CALB a été expliquée à l'aide de simulations de docking et de dynamique moléculaire. Elle résulte d'une orientation inappropriée du donneur d'acyle liée à la sérine catalytique et d'une proximité insuffisante des hydroxyles de la QCT vis-à-vis des résidus catalytiques. L'éloignement de la QCT de la triade catalytique est due à la rigidité de la molécule, l'étroitesse du site actif ainsi qu'à des interactions hydrophobes et électrostatiques entre le substrat et les résidus de la cavité. En revanche, cette approche de simulation moléculaire prédit un bon positionnement des deux substrats dans le site actif de la lipase de Pseudomonas cepacia (PCL), laquelle est capable d'acétyler la QCT. Dans une troisième partie, l'influence de mutations de deux résidus impliqués dans les liaisons de stabilisation hydrophobe de la QCT dans la CALB a été investiguée par simulation. La substitution d'isoleucines par des valines et des alanines conduit à une augmentation du volume de la poche catalytique et une mobilité accrue de la QCT. Mais ces mutations sont insuffisantes pour permettre un positionnement adéquat de l'acétate et de la QCT par rapport à la triade catalytique. La dernière partie focalise sur les interactions électrostatiques entre la QCT et le site actif de CALB. Les orientations du substrat dans la cavité suite à une méthylation ou une acétylation des groupements hydroxyles de la QCT sont précisées / Quercetin (QCT) is a plant-produced polyphenolic compound well-known for its antioxidant activities and beneficial health effects. Its solubility, stability, bioavailability and biological activities may be improved by a selective acylation of its hydroxyl groups. This work aims at studying the possibility of QCT enzymatic acetylation by Candida antarctica lipase B (CALB), the most industrially exploited lipase for regio- and enantioselective esterifications. In prospect of the rational enzyme design, a molecular modeling approach was implemented to understand the interactions that govern the substrate positioning and orientation in the lipase's active site. In a first experimental part, the absence of CALB acetylation activity towards quercetin in excess of vinyl acetate was confirmed. In a second part, this inactivity of CALB was explained by means of docking and molecular dynamics simulations. This results from an inappropriate positioning of the acyl donor linked to the catalytic serine and from an insufficient proximity of QCT hydroxyls vis-à-vis catalytic residues. The distance of QCT from the catalytic triad is due to its rigidity and to the narrow active site as well as to hydrophobic and electrostatic interactions between the substrate and the cavity residues. On the contrary, this molecular simulation approach predicts an appropriate positioning of both substrates in the active site of Pseudomonas cepacia lipase (PCL), which can perform QCT acetylation. In a third part, the impact of mutations of two residues implicated in the stabilization of QCT by hydrophobic interactions in CALB was investigated through simulations. The substitution of isoleucines by alanines and valines led to an increase in the catalytic pocket volume which intensified the mobility of QCT. However, these mutations are insufficient to allow an appropriate positioning of acetate and QCT in relation to the catalytic triad. The last part of this work focuses on the electrostatic interactions between QCT and CALB's active site. The substrate orientation in the cavity following methylation or acetylation of QCT's hydroxyl groups was clarified
|
Page generated in 0.0867 seconds