Spelling suggestions: "subject:"quercétine"" "subject:"quercetine""
1 |
Comparison of topical quercetin nanoformulations for skin protection / Comparaison de nanoformulations de quercétine pour la protection cutanéeHatahet, Taher 15 September 2016 (has links)
Les flavonoïdes sont des pigments d’origine naturelle conférant leurs couleurs aux fleurs et aux fruits, identifiés dans plus de quatre milles espèces. Les flavonoïdes sont classés selon leur structure chimique de base formée par deux cycles aromatiques reliés par trois carbones : C6-C3-C6, chaîne souvent fermée en un hétérocycle oxygéné hexa- ou pentagonal. Les flavonoïdes présentent des activités physiologiques qui leurs permettent d’être utilisés comme médicaments notamment pour leur pouvoir à piéger les radicaux libres. Les activités de flavonoïdes ont fait l’objet de nombreux articles de revue. Parmi les flavonoïdes, la quercétine est la molécule la plus distribuée dans la nature qui présente la meilleure activité anti radicalaire et aussi antiinflammatoire comparativement aux autres molécules de la même famille. En général, les flavonoïdes et la quercétine en particulier présentent une solubilité très limitée dans l’eau, cette limitation réduit leur absorption/pénétration et donc leur efficacité. En partant de l’idée que la peau est le l’organe le plus grand du corps humain et aussi l’organe le plus exposé au stress oxydant lié aux radiations UV et aux produits corrosifs et irritants, la quercétine est donc une molécule antioxydante de choix pour être appliquée sur la peau. Le premier objectif de thèse a été de développer plusieurs formulations nanométriques de quercétine afin d'augmenter sa solubilité dans l’eau et améliorer ses propriétés physico chimiques. Le deuxième objectif sera de comparer ces formulations en termes de capacité de chargement de quercétine, de toxicité vis à vis des cellules HaCaT (kératinocytes) THP-1 (monocytes) et Vero (épithéliale), et enfin le maintien de l’activité de la quercétine sur les cellules in vitro, pour mettre in fine en évidence une augmentation de la pénétration cutanée la quercétine in vivo.Dans ce projet, trois approches de formulations nanométriques (smartCrystals®, nanocapsules lipidiques et liposomes) ont été testées pour améliorer la solubilité de la quercétine. Les formulations sont optimisées en termes de procédé de préparation (transposition industrielle) et de composition des excipients pour augmenter la quantité de quercétine formulée. Les formulations ont été caractérisées sur plusieurs paramètres : taille, PDI, taux de chargement en quercétine, état cristallin et cinétique de libération de quercétine in vitro. Ensuite, les formulations ont été comparées entre elles sur les cellules HaCaT et THP-1 avec détermination de leur toxicité et activité protectrice. Enfin, deux formulations (quercétine smartCrystals® avec le TPGS et quercétine LNC 20) ont été sélectionnées et comparées in vivo pour évaluer l’amélioration de la pénétration cutanée de quercétine. Ce projet propose une solution pour formuler la quercétine d’une façon pertinente et efficace qui pourra être extrapolée au niveau industriel pour des applications cutanées de molécules peu solubles dont l'efficacité est limitée par leur faible pénétration cutanée. / Flavonoids are plants pigments. Flavonoids can be observed by the naked eye as they form the amazing colors of flower petals. Flavonoids are classified on the basis of their chemical structure composed of two aromatic cycles connected by three carbons: C6-C3-C6, chains are closed in hexa- or pentagonal oxygenated heterocyclic ring. Flavonoids present interesting physiological activates that permit their usefulness as medicaments, especially for their free radical scavenging ability. Indeed, flavonoids activates were the object of numerous review articles.Among flavonoids, quercetin is the molecule the most distributed in nature that presents the strongest antioxidant and antiinflammatory activities in comparison to other molecules of this family. In general flavonoids and specially quercetin present poor water solubility, thus limiting their absorption/penetration and as a result their efficiency.Starting for the idea that the skin is the largest organ of the human body and the organ, which the most exposed to oxidative stress due to UV irradiation or other corrosive and irritating chemicals. Quercetin is a candidate for skin supplementation with exogenous antioxidant. The first objective of the thesis is to develop several formulations at the nanometric range for quercetin, in order to increase its water solubility and to enhance its physicochemical properties. The second objective is to compare these formulations in terms of quercetin loading capacity, cellular toxicity of quercetin and its formulations on HaCaT cells (keratinocytes), THP-1 cells (monocytes) and Vero cells (epithelial). Then, the protective activity of quercetin in vitro on cells to finally put in evidence the increase of quercetin in vivo skin penetration in formulations.In this project, three nanoformulations approaches (smartCrystals®, lipid nanocapsules and liposomes) were tested for the increase of quercetin water solubility. The formulations were optimized for scale up to industrial scale at the level of preparation method, also in the excipients compositions for higher affinity to quercetin. The formulations were characterized in terms of particle size, PDI, quercetin loading, crystallinity evaluation and quercetin in vitro release profile. Then, formulations were compared in interaction with HaCaT and THP-1 cells for their cellular toxicity and protective activity. Finally, two formulations (quercetin smartCrystals® with TPGS and quercetin lipid nanocapsules 20) were selected and compared for the enhancement of the in vivo skin penetration of quercetin.This project propose a solution for the successful formulation of quercetin enabling its efficient skin delivery. This project can be extrapolated to industrial level for quercetin and other poorly water soluble molecules that present limited efficiency due to their low skin penetration capacity.
|
2 |
Élaboration de nanoparticules de protéines de lactosérum comme système d'administration de quercétine en système gastro-intestinalLeclerc, Pierre-Louis. 18 April 2018 (has links)
Il existe des molécules d'origine naturelles qui ont une activité biologique d'intérêt, mais celle-ci peut se trouver altérée par des caractères physicochimiques intrinsèques défavorables, comme par exemple une faible solubilité. Le développement d'un système colloïdale nanoparticulaire vise à améliorer la mise à disposition d'une molécule d'intérêt en agissant comme véhicule de transport pour celle-ci. Ce travail de recherche avait comme but l'utilisation d'agrégats de protéines de lactosérum de taille nanométrique pour l'amélioration des propriétés biopharmaceutiques d'un flavonoïde, la quercétine. Tout d'abord, des nanoparticles monodispersées de 41 ± 3 nm, ont été produites par agrégation thermique de protéines de lactosérum en modulant les conditions spécifiques d'agrégation en termes de concentrations protéique et calcique, de pH et de température de traitement. Ces nanoparticules ont démontré une bonne stabilité en solution aqueuse et une capacité à s'adsorber ainsi que de pénétrer les cellules épithéliales intestinales in vitro. Ensuite, l'incorporation de la quercétine aux nanoparticules a été effectuée via une agrégation thermique des protéines sous la forme de complexes avec la quercétine. La quercétine a en effet démontré une capacité à se lier à la ß-lactoglobuline et ce par une méthode spectrophotométrique et de spectrocopie de fluorescence. La quercétine en complexe avec la P-lactoglobuline a aussi démontré une capacité antioxydante totale majoritairement conservée dans les conditions de formation de nanoagrégats, comparativement la quercétine libre. Enfin, le système nanoparticulaire avec quercétine incorporée a été soumis à des conditions de digestion gastro-intestinales in vitro pour évaluer sa stabilité et sa capacité à se rendre au site d'absorption de la quercétine dans l'intestin. Les nanoparticules ont maintenu leur intégrité dans les milieux gastrique (MGS) et intestinal (MIS) simulés. Elles ont par contre été rapidement dégradées par les enzymes digestives gastriques et intestinales. Parallèlement, il a été observé par spectrocopie de fluorescence que la quercétine restait liée aux nanoparticules dans le MGS et le MIS. Le relarguage de la quercétine ainsi que sa capacité antioxydante étaient corrélées à la dégradation des nanoparticules dans le MGS et le MIS. L'ensemble de ces résultats appuie l'hypothèse selon laquelle l'incorporation de la quercétine à des nanoparticules de protéines de lactosérum permet d'améliorer les propriétés biopharmaceutiques du flavonoïde.
|
3 |
Mécanismes de résistance à l'apoptose induite par TRAIL dans les cellules cancéreuses : restauration de la sensibiltié à TRAIL par la chimiothérapie conventionnelle ou par un polyphénol, la quercétineJacquemin, Guillaume 14 December 2010 (has links) (PDF)
TRAIL (TNF-related apoptosis inducing ligand) est une protéine du système immunitaire appartenant à la famille du TNF (Tumor necrosis factor). L'intérêt de TRAIL en thérapie anti-cancéreuse réside dans sa capacité à induire la mort par apoptose des cellules tumorales, sans exercer de toxicité envers les cellules saines. Le principal frein à l'utilisation de TRAIL est la survenue de mécanismes de résistance à TRAIL dans certaines tumeurs. Mon travail de thèse a consisté à étudier ces mécanismes de résistance à TRAIL et à élaborer des stratégies visant à les contourner. Dans un premier temps, mon intérêt s'est porté sur le récepteur antagoniste TRAIL-R4, qui est capable de fixer TRAIL sans engager de signal de mort. Nous avons montré pour la première fois que TRAIL-R4 est à l'origine de l'induction de voies de signalisation intracellulaires de survie et de prolifération dans le modèle HeLa de carcinome du col de l'utérus. Ces cellules résistantes peuvent néanmoins être sensibilisées à l'action de TRAIL par un pré-traitement chimiothérapeutique conventionnel (cisplatine, étoposide ou 5-FU). Cette sensibilisation ne fait pas intervenir la voie mitochondriale de l'apoptose, mais passe par une augmentation du recrutement et de l'activation de la caspase-8 au sein du complexe initiateur de mort (DISC). Dans un deuxième temps, mon travail s'est focalisé sur des lymphomes B non-Hodgkiniens particulièrement agressifs, les lignées VAL et RL. La résistance à TRAIL de ces lymphomes est due à un blocage de la voie mitochondriale de l'apoptose, notamment en raison de l'expression des protéines anti-apoptotiques Bcl-2, Mcl-1 et survivine. Mon objectif a été d'élaborer une stratégie thérapeutique visant à contourner cette résistance. Dans ce contexte, nous avons évalué l'efficacité d'un composé polyphénolique issu des plantes, la quercétine. Nos résultats montrent que la combinaison de la quercétine et de TRAIL permet de tuer de façon synergique les lymphomes VAL et RL. Le mécanisme moléculaire de cette synergie comprend l'activation de la voie mitochondriale de l'apoptose, ainsi que l'inhibition de Mcl-1 et de la survivine. L'ensemble de ce travail est rassurant quant à l'utilisation de la cytokine TRAIL en thérapie anti-tumorale, dans le cadre d'une thérapie combinée.
|
4 |
Mécanismes de résistance à l'apoptose induite par TRAIL dans les cellules cancéreuses : restauration de la sensibiltié à TRAIL par la chimiothérapie conventionnelle ou par un polyphénol, la quercétine / Mechanisms of resistance to TRAIL-induced apoptosis in cancer cells : restoration of the sensitivity to TRAIL by standard chemotherapy or by quercetin, a polyphenolic compoundJacquemin, Guillaume 14 December 2010 (has links)
TRAIL (TNF-related apoptosis inducing ligand) est une protéine du système immunitaire appartenant à la famille du TNF (Tumor necrosis factor). L'intérêt de TRAIL en thérapie anti-cancéreuse réside dans sa capacité à induire la mort par apoptose des cellules tumorales, sans exercer de toxicité envers les cellules saines. Le principal frein à l’utilisation de TRAIL est la survenue de mécanismes de résistance à TRAIL dans certaines tumeurs. Mon travail de thèse a consisté à étudier ces mécanismes de résistance à TRAIL et à élaborer des stratégies visant à les contourner. Dans un premier temps, mon intérêt s'est porté sur le récepteur antagoniste TRAIL-R4, qui est capable de fixer TRAIL sans engager de signal de mort. Nous avons montré pour la première fois que TRAIL-R4 est à l'origine de l'induction de voies de signalisation intracellulaires de survie et de prolifération dans le modèle HeLa de carcinome du col de l'utérus. Ces cellules résistantes peuvent néanmoins être sensibilisées à l'action de TRAIL par un pré-traitement chimiothérapeutique conventionnel (cisplatine, étoposide ou 5-FU). Cette sensibilisation ne fait pas intervenir la voie mitochondriale de l'apoptose, mais passe par une augmentation du recrutement et de l'activation de la caspase-8 au sein du complexe initiateur de mort (DISC). Dans un deuxième temps, mon travail s'est focalisé sur des lymphomes B non-Hodgkiniens particulièrement agressifs, les lignées VAL et RL. La résistance à TRAIL de ces lymphomes est due à un blocage de la voie mitochondriale de l'apoptose, notamment en raison de l'expression des protéines anti-apoptotiques Bcl-2, Mcl-1 et survivine. Mon objectif a été d’élaborer une stratégie thérapeutique visant à contourner cette résistance. Dans ce contexte, nous avons évalué l’efficacité d'un composé polyphénolique issu des plantes, la quercétine. Nos résultats montrent que la combinaison de la quercétine et de TRAIL permet de tuer de façon synergique les lymphomes VAL et RL. Le mécanisme moléculaire de cette synergie comprend l'activation de la voie mitochondriale de l’apoptose, ainsi que l'inhibition de Mcl-1 et de la survivine. L'ensemble de ce travail est rassurant quant à l'utilisation de la cytokine TRAIL en thérapie anti-tumorale, dans le cadre d'une thérapie combinée. / The TNF-family member TRAIL (TNF-related apoptosis inducing ligand) is a cytokine involved in immune anti-tumour surveillance. TRAIL is one of the most promising agents currently under investigation, as it exhibits efficient anti-cancer cytotoxicity with limited side effects on healthy cells. The problem in current cancer therapy is that some cancer cells are already resistant, or can become resistant to TRAIL-induced cell death. The aim of my thesis was to study the mechanisms of resistance to TRAIL, and to find a way to bypass it. First, we were interested in the TRAIL-R4 antagonistic receptor, which is known to bind TRAIL without inducing a death signal. We have demonstrated for the first time that TRAIL-R4 is able to induce intracellular signalling that mediates cell survival and proliferation in the cervical carcinoma HeLa cell line. However, these resistant cells could be sensitized to TRAIL by a pretreatment with standard chemotherapy (cisplatinum, etoposide or 5-FU). This chemo-sensitization does not require the mitochondrial loop of apoptosis, but is accompanied by an enhancement of caspase-8 recruitment and activation within the death-inducing signalling complex (DISC). Next, our interest focused on aggressive non Hodgkin B-lymphomas. These lymphomas are highly resistant to TRAIL because of a defect in the mitochondrial pathway of apoptosis, and through the expression of Bcl-2, Mcl-1 and survivin antiapoptotic proteins. My objective was to elucidate a strategy to restore TRAIL-sensitivity in these lymphomas. In this context, we assessed the use of quercetin, a polyphenolic compound derived from plants. Our results showed that the combination of TRAIL with quercetin efficiently killed these lymphomas in a synergistic fashion. The molecular mechanisms of the synergy include the activation of the mitochondrial pathway, and the inhibition of Mcl-1 and survivin. Taken together, these results are promising for the future use of TRAIL as a combined therapy against cancer.
|
5 |
Effets insulino-sécrétoires et protecteurs de la quercétine au niveau de la cellule beta pancréatique : implication du calcium intracellulaire et de ERK1/2 / Effect of quercetin on insulin secretion and protection of pancreatic beta cell : implication of intracellular calcium and ERK1/2Bardy, Guillaume 12 December 2012 (has links)
Dans le diabète de type 2 établi, l'hyperglycémie chronique, un taux élevé d'acides gras libres et l'inflammation induisent un stress oxydatif (SO) au niveau de la cellule beta. Le SO, qui apparaît dès le stade de pré-diabète, peut induire un dysfonctionnement précoce de cette cellule. Ainsi, la protection de la cellule β par des molécules anti-oxydantes pourrait ralentir la progression du pré-diabète au diabète.La quercétine, un flavonoïde, a présenté des propriétés antidiabétiques dans plusieurs études in vivo. Cependant, très peu de données traitent de son mécanisme d'action directement au niveau de la cellule beta. Dans ce contexte, nous avons étudié les effets de la quercétine au niveau de la cellule beta dans des conditions physiologiques et des conditions de SO.Nos résultats montrent qu'en présence de concentrations stimulantes de sécrétagogue, la quercétine potentialise la sécrétion d'insuline par un mécanisme impliquant l'augmentation de calcium intracellulaire et la potentialisation de ERK1/2 via l'activation des voies de la PKA et de la CaMK II. De plus, la quercétine protège la cellule beta du SO en sur-activant ERK1/2. Le resvératrol et la NAC, deux antioxydants de référence, sont inactifs dans ces conditions expérimentales.En absence de concentrations stimulantes de sécrétagogue, la quercétine induit une sécrétion d'insuline modérée en augmentant le calcium intracellulaire suite à une activation directe des CaV de type L. Dans ces conditions, l'activation de ERK1/2 induite par la quercétine, qui est indépendante de l'activation des voies de la PKA et de la CaMK II, ne serait pas impliquée dans le mécanisme sécrétoire. Nos résultats indiquent que le mécanisme d'action de la quercétine au niveau de la cellule β ne repose pas uniquement sur ses capacités anti-oxydantes mais fait intervenir des cibles pharmacologiques et la régulation de voies de signalisation intracellulaires. / In type 2 diabetes, chronic hyperglycaemia, elevated free fatty acids and inflammation induce oxidative stress (OS) in pancreatic β cell. SO, which appears at the stage of pre-diabetes, may induce early dysfunction of this cell. Thus, the β cell protection by antioxidant molecules could slow the progression of pre-diabetes to diabetes.Quercetin, a flavonoid, has shown antidiabetic properties in several in vivo studies. However, very few data address its mechanism of action directly at the β cell. In this context, we studied the effects of quercetin at the β cell under physiological conditions and conditions of OS.Our results show that in the presence of stimulating concentrations of secretagogue, quercetin potentiates insulin secretion by a mechanism involving increased intracellular calcium and potentiation of ERK1 / 2 via activation of the PKA and the CaMK II pathways. In addition, quercetin protects beta cell from OS via a suractivation of ERK1/2. Resveratrol and NAC, two antioxidants of reference are inactive under these experimental conditions.In the absence of stimulating concentration of secretagogue, quercetin induced moderate insulin secretion by increasing the intracellular calcium via a direct activation of L-type CaV Under these conditions, the activation of ERK1/2 induced by quercetin, which is independent of the activation pathways of PKA and CaMK II to, would not be involved in the secretory mechanism.Our results indicate that the mechanism of action of quercetin at the β cell not only based on its antioxidant capacity but involves pharmacological targets and the regulation of intracellular signaling pathways.
|
6 |
Modélisation moléculaire de l'acétylation de la quercétine par des lipases : étude des interactions enzyme-substrat / Molecular Modeling of Quercetin Acetylation by Lipases : Study of Enzyme-Substrate InteractionsBidouil, Christelle 13 November 2012 (has links)
La quercétine (QCT) est un composé polyphénolique d'origine végétale connu pour ses activités antioxydantes et ses effets bénéfiques sur la santé. Sa solubilité, sa stabilité, sa biodisponibilité et ses activités biologiques peuvent être améliorées par une acylation sélective de ses groupements hydroxylés. Ce travail vise à étudier la possibilité d'une acétylation enzymatique de la QCT par la lipase B de Candida antarctica (CALB), la lipase la plus exploitée industriellement pour des estérifications régio- et énantiosélectives. Dans une perspective d'ingénierie rationnelle de l'enzyme, une démarche de modélisation moléculaire est mise en oeuvre pour mieux comprendre les interactions qui régissent le positionnement et l'orientation du substrat dans le site actif de la lipase. Dans une première partie expérimentale, l'absence d'activité d'acétylation de la CALB envers la QCT, en présence d'un excès d'acétate de vinyle, a été confirmé. Dans une seconde partie, cette inactivité de la CALB a été expliquée à l'aide de simulations de docking et de dynamique moléculaire. Elle résulte d'une orientation inappropriée du donneur d'acyle liée à la sérine catalytique et d'une proximité insuffisante des hydroxyles de la QCT vis-à-vis des résidus catalytiques. L'éloignement de la QCT de la triade catalytique est due à la rigidité de la molécule, l'étroitesse du site actif ainsi qu'à des interactions hydrophobes et électrostatiques entre le substrat et les résidus de la cavité. En revanche, cette approche de simulation moléculaire prédit un bon positionnement des deux substrats dans le site actif de la lipase de Pseudomonas cepacia (PCL), laquelle est capable d'acétyler la QCT. Dans une troisième partie, l'influence de mutations de deux résidus impliqués dans les liaisons de stabilisation hydrophobe de la QCT dans la CALB a été investiguée par simulation. La substitution d'isoleucines par des valines et des alanines conduit à une augmentation du volume de la poche catalytique et une mobilité accrue de la QCT. Mais ces mutations sont insuffisantes pour permettre un positionnement adéquat de l'acétate et de la QCT par rapport à la triade catalytique. La dernière partie focalise sur les interactions électrostatiques entre la QCT et le site actif de CALB. Les orientations du substrat dans la cavité suite à une méthylation ou une acétylation des groupements hydroxyles de la QCT sont précisées / Quercetin (QCT) is a plant-produced polyphenolic compound well-known for its antioxidant activities and beneficial health effects. Its solubility, stability, bioavailability and biological activities may be improved by a selective acylation of its hydroxyl groups. This work aims at studying the possibility of QCT enzymatic acetylation by Candida antarctica lipase B (CALB), the most industrially exploited lipase for regio- and enantioselective esterifications. In prospect of the rational enzyme design, a molecular modeling approach was implemented to understand the interactions that govern the substrate positioning and orientation in the lipase's active site. In a first experimental part, the absence of CALB acetylation activity towards quercetin in excess of vinyl acetate was confirmed. In a second part, this inactivity of CALB was explained by means of docking and molecular dynamics simulations. This results from an inappropriate positioning of the acyl donor linked to the catalytic serine and from an insufficient proximity of QCT hydroxyls vis-à-vis catalytic residues. The distance of QCT from the catalytic triad is due to its rigidity and to the narrow active site as well as to hydrophobic and electrostatic interactions between the substrate and the cavity residues. On the contrary, this molecular simulation approach predicts an appropriate positioning of both substrates in the active site of Pseudomonas cepacia lipase (PCL), which can perform QCT acetylation. In a third part, the impact of mutations of two residues implicated in the stabilization of QCT by hydrophobic interactions in CALB was investigated through simulations. The substitution of isoleucines by alanines and valines led to an increase in the catalytic pocket volume which intensified the mobility of QCT. However, these mutations are insufficient to allow an appropriate positioning of acetate and QCT in relation to the catalytic triad. The last part of this work focuses on the electrostatic interactions between QCT and CALB's active site. The substrate orientation in the cavity following methylation or acetylation of QCT's hydroxyl groups was clarified
|
7 |
Nanoformulations pour la protection de flavonoïdes instables : exemple de la quercétine / Nanoformulations for protection of unstable flavonoids : example of quercetinTruong Công, Tri 09 November 2012 (has links)
Cette thèse porte sur la mise au point de formulations de nanoparticules lipidiques à base de polyoxylglycérides afin d’assurer la protection de principes actifs instables chimiquement et physiquement, la quercétine (un flavonoïde antioxydant fragile) dans le cas présent. Différents systèmes dispersés ont été préparés par homogénéisation haute pression à chaud avec une taille des particules blanches entre 100 - 200 nm. Ces nanodispersions sont très stables sur plusieurs années à température ambiante. L’encapsulation de la quercétine, dans les nanoparticules lipidiques multicompartimentées et la préparation de nanocristaux ont permis d’augmenter fortement sa teneur dans la dispersion et d’améliorer effectivement sa stabilité physico-chimique. / This thesis focuses on the development of polyoxylglycérides-based lipid nanoparticles to protect labile APIs, quercetin (a fragile antioxidant flavonoid) in this case. Different nanoparticulate systems were prepared by high pressure homogenization with particle size between 100 to 200 nm. These nanodispersions are very stable over several years at room temperature. Encapsulation of quercetin in compartmented lipid nanoparticles and preparation of nanocrystals have increased significantly its content in the dispersion and effectively improve its physical and chemical stability.
|
8 |
Amélioration des qualités nutritionnelles et organoleptiques des aliments par encapsulation de composés actifs (arômes, vitamines, antioxydants, acides gras insaturés...) / Amelioration of the organolepti and nutritional values of food by encapsulation of its bioative ingredients (aromas, vitamins, antioxidants, unsaturated fatty acids...)Azzi, Joyce 04 December 2017 (has links)
L'incorporation d'ingrédients bioactifs dans les produits alimentaires est en plein essor. Il a été démontré que ces ingrédients possèdents des propriétés biologiques importantes permettant l'amélioration de la santé et la prévention des maladies dites de civilisations. Toutefois, l'ajout de ces molécules bioactives est dans la plupart des cas impossible ou insuffisant, du fait que ces composés ne sont que peu solubles dans les systèmes aqueux et présentent i) une stabilité limitée contre les dégradations chimique ou physique, ii) une libération non contrôlée ou une faible biodisponibilité. Face à ces contraintes, les recherches actuelles visent à élaborer des systèmes d'encapsulation efficaces pour résoudre ces problèmes de formulation. Dans notre étude, deux représentants d'ingrédients alimentaires ont été choisi : le sesquiterpène nérolidol (Ner) et le flavonoïde quercétine (Quer) présentant diverses activités biologiques mais des propriétés physicochimiques problématiques. Ainsi, l'objectif de notre travail a été d'encapsuler ces composés actifs dans les cyclodextrines (CDs), les liposomes conventionnels (LCs) et le système mixte cyclodextrine-liposomes (DCLs) afin de développer des systèmes naturels et éco-compatibles ayant des applications potentielles dans les domaines alimentaires.Trois axes ont été abordés. Le premier axe a porté sur la préparation et la caractérisation des complexes d'inclusion CD/invité en solution et à l'état solide. Les techniques de spectroscopie UV-visible, Chromatographie Liquide à Haute Performance (CLHP), Carbone Organique Total (TOC), ¹H Résonance magnétique nucléaire (RMN), 2D ROESY RMN et de la modélisation moléculaire ont été utilisées comme outils pour la caractérisation des complexes obtenus. Des études de phase de solubilité ont également été réalisées. Le deuxième axe a porté sur la préparation des LCs et DCLs par la méthode d'injection éthanolique et leur caractérisation. Les préparations des LCs encapsulant la quercétine a été réalisée à partir de phospholides naturels de jaune d'oeuf (Lipoid E80) et de soja insaturés (Lipoid S100) ou saturés (Phospholipon 90H) afin d'étudier l'effet de la composition lipidique que les caractéristiques des liposomes. La formulation optimale a été par la suite appliquée pour préparer des LCs encapsulant le nérolidol et des DCLs encapsulant les deux molécules. Ce dernier est produit par l'incorporation des complexes d'inclusion HP-β-CD/Ner (à différents rapport moléculaire CD:Ner) et SBE-β-CD/Quer dans la cavité aqueuse des liposomes. Le dernier axe a été orienté vers l'évaluation de l'effet de l'encapsulation sur les propriétés physicochimiques du nérolidol et de la quercétine (libération in vitro, photostabilité, stabilité dans les milieux gastro-intestinales, stabilité de stockage) et leur activité antioxydante. Les résultats ont montré que les CSs ont été capables d'encapsuler les composés actifs étudiés, d'augmenter leur solubilité, leur photostabilité ainsi que leur activité antioxydante. En outre, les liposomes à base de Lipoid E80 ont été trouvés majoritairement de taille nanométrique et ont conféré aux molécules une efficacité d'encapsulation (EE) élevée ainsi qu'une meilleure stabilité par rapport aux deux autres types de liposomes. De plus, la taille des DCLs ains que leur EE ont été prouvées dépendante du rapport moléculaire CD:invité. Par rapport aux LCs, les DCLs ont assuré une libération prolongée du nérolidol, ont augmenté la photostabilité des composés et la stabilité de la quercétine dans les milieux biologiques. Les résultats de cette étude suggèrent que ces systèmes peuvent être considérés comme outils prometteurs pour l'optimisation des formulations alimentaires incorporant le nérolidol et/ou la quercétine. / Phytochemicals are widely distributed secondary metabolites, divided into three major classes : terpenoids, flavonoids and alkaloids. They are shown to possess important biological properties such as anti-cancer, anti-inflammatory and anti-microbial properties. Therefore, increasing the use of these bioactive molecules in food products may reduce the risk of widespread diseases referred to as "diseases of civilization". However, their low solubility, susceptibility to degradation and their rapid release reduce their bioavailability in the human body and thus their biological effect. To solve the aforementioned physicochemical drawbacks, encapsulation systems were developed to allow the incorporation of phytochemicals in food. In this study, two food ingredients : the sesquiterpene nerolidol and the flavonol quercetin were selected du to their potent biological activities but their problematic physicochemical properties.Therfore, the aim of this work was to encapsulate these molecules into cyclodextrins (CDs), conventional liposomes (CLs) and the double systeme drug-in-cyclodextrin-in-liposomes (DCLs), in order to develop nztural and biocompatible formulations that may find applications in food fields. This project was built around three main research axes. The first part dealt with the preparation and the characterization of CD/guest inclusion complexes both in solution and in solid state. Characterizations were performed with UV-visible spectroscopy, High Performance Liquid Chromatography (HPLC), Total Oragnic Carbon (TOC), ¹H NMR, 2D ROESY NMR, and molecular modeling. These investigations were complemented with phase solubility studies.The second axis addressed the preparation of CLs ans DCLs by ethanol injection method and characterization of the vesicles. CLs encapsulating quercetin were prepared from three different types of phospholipids (Lipoid E80, Lipoid S100, Phospholipon 90H) in order to study the effect of lipid composition on the characteristics of liposomes. The optimal formulation was then selected to prepare nerolidol loaded-CLs and DCLs encapsulating the two compounds. HP-β-CD/Ner (at different CD:Ner molar ratios) and SBE-β-CD/Quer inclusion complexes were used as the aqueous phase in the DCL system. The last part focused on the effect of encapsulation on the physicochemical properties of nerolidol and quercetin (in vitro release, photostability, stability in gastro-intestinal fluids, storage stability) and their antioxidant activities. Results demonstrated that CDs could successfully encapsulate bioactive compounds, enhance their solubility , photostability and antioxidant activity. Furthermore, Lipoid E80-liposomes were nanometric in size, exhibited a high entrapment efficiency and higher stability in comparison to the other formulations. Moreover, CD:guest molar ratio influenced the size of DCLs and their encapsulation efficiency. When compared to CLs, DCLs extended the release of neridol, enhanced the photostability of both compounds ans increased the stability of quercetin in biological fluids. These results could be considered as a promising tool to achieve an optimized and efficient formulation incorporating nerolidol and quercetin in food industry.
|
Page generated in 0.0355 seconds