Spelling suggestions: "subject:"canine detection"" "subject:"canine 1detection""
1 |
Evaluation of the Odor Compounds Sensed by Explosive-Detecting CaninesLotspeich, Erica H. 09 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Trained canines are commonly used as biological detectors for explosives; however, there are some areas of uncertainty that have led to difficulties in canine training and testing. Even though a standardized container for determining the accuracy of explosives-detecting canines has already been developed, the factors that govern the amount of explosive vapor that is present in the system are often uncertain. This has led to difficulties in comparing the sensitivity of canines to one another as well as to analytical instrumentation, despite the fact that this container has a defined headspace and degree of confinement of the explosive.
For example, it is a common misconception that the amount of explosive itself is the chief contributor to the amount of odor available to a canine. In fact, odor availability depends not only on the amount of explosive material, but also the explosive vapor pressure, the rate with which the explosive vapor is transported from its source and the degree to which the explosive is confined. In order to better understand odor availability, headspace GC/MS and mass loss experiments were conducted and the results were compared to the Ideal Gas Law and Fick’s Laws of Diffusion. Overall, these findings provide increased awareness about availability of explosive odors and the factors that affect their generation; thus, improving the training of canines.
Another area of uncertainty deals with the complexity of the odor generated by the explosive, as the headspace may consist of multiple chemical compounds due to the extent of explosive degradation into more (or less) volatile substances, solvents, and plasticizers. Headspace (HS) and solid phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (GC/MS) were used to determine what chemical compounds are contained within the headspace of an explosive as well as NESTT (Non-Hazardous Explosive for Security Training and Testing) products. This analysis concluded that degradation products, plasticizers, and taggants are more common than their parent explosive.
|
2 |
The Detection of an Invasive Pathogen through Chemical and Biological Means for the Protection of Commercial CropsSimon, Alison G 22 September 2017 (has links)
Standoff detection of targets using volatiles is essential when considering substances that are hazardous or dangerous, or for which the presence or location is unknown. For many invasive biological threats, their presence is often not realized until they have begun visibly affecting and spreading through crops or forests. The fungus Raffaelea lauricola is a biothreat vectored by the invasive beetle Xyleborus glabratus, or redbay ambrosia beetle (RAB), whose presence in avocado groves is currently detectable by visual inspection. Once visually identified, the affected trees must be removed and destroyed to protect those remaining trees. However, if the fungus is identified via standoff volatile detection, there is anecdotal evidence that it can be treated with propiconazole and saved from progression to the fatal laurel wilt disease. As a result of the rapid spread of R. lauricola and the quick death of trees, early detection through standoff methods is essential. The only current method of pre-symptomatic identification is canine detection. Canines are sensitive and selective biological detectors that can trace odors to their source, despite the presence of a variety of background odors. The present research evaluated the volatile organic compounds (VOCs) of the laurel wilt disease and R. lauricola using headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Additionally, a new method for odor collection and presentation to trained detection canines was developed. Knowledge of the disease and standoff volatile detection capabilities are improved using this information.
|
3 |
Evaluation of the Scent Collection System for Its Effectiveness in Volatile Organic Compound Collection and Use in Canine TrainingSanchez, Claudia L, Ms 16 March 2015 (has links)
As a result of increased terrorist activity around the world, the development of a canine training aid suitable for daily military operations is necessary to provide effective canine explosive detection. Since the use of sniffer dogs has proven to be a reliable resource for the rapid detection of explosive volatiles organic compounds, the present study evaluated the ability of the Human Scent Collection System (HSCS) device for the creation of training aids for plasticized / tagged explosives, nitroglycerin and TNT containing explosives, and smokeless powders for canine training purposes. Through canine field testing, it was demonstrated that volatiles dynamically collected from real explosive material provided a positive canine response showing the effectiveness of the HSCS in creating canine training aids that can be used immediately or up to several weeks (3) after collection under proper storage conditions. These reliable non-hazardous training aids allow its use in areas where real explosive material aids are not practical and/or available.
|
4 |
The Development of an Optimized System of Narcotic and Explosive Contraband Mimics for Calibration and Training of Biological DetectorsMacias, Michael S 27 May 2009 (has links)
Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.
|
5 |
Evaluation of Odor Compounds Sensed by Explosives-Detecting CaninesKitts, Kelley M. 14 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Canines are regularly utilized by law enforcement agencies to detect explosives. However, the mechanism by which canines respond to explosive vapors is not well understood, leading to difficulties in canine training and testing. It is known that the amount of vapor generated from explosive compounds is dependent upon several factors
including sample amount, vapor pressure, and the degree of confinement. Underlying
these factors is the basic process of evaporation of an unconfined explosive, which is rucial to understanding how explosive vapors behave in other, more confined, systems.
In Stage One of this study, evaporation rates were determined for several explosive liquids using an analytical balance. These rates were compared to one another as well as to theoretical models for the evaporation of liquids. In general and as expected, mass decreased linearly with time and evaporation rates decreased logarithmically as boiling point increased. Several examples of solvent “pinning” on a metal surface were also
observed.
While an empirical model for the evaporation of unconfined explosive liquids was developed, a comprehensive model for the escape of explosive vapors from sealed containers (i.e., a suitcase, knapsack, or IED container itself) is needed. The second part
of Stage One of this study was to determine that the flow rate of explosive vapors escaping from relatively large orifices does not conform to Fick’s Law of Diffusion.
Fick’s model states that the flow rate is linearly dependent upon the cross sectional area of the orifice and the material’s diffusion coefficient. Instead, the flow rate was found to
be linearly dependent upon the diameter of the orifice due to the tendency of the flow to diffuse outwards from its circular edge. A clear relationship between flow rate and diffusion coefficient was seen, however.
Additional uncertainty arises concerning the complexity of the odor generated
from explosive compounds. Because explosive vapors are often complex (they consist of multiple chemical compounds), confusion exists regarding the cause of canine alert; that is the “odor compound” that allows for canine detection of various explosives. Although
2, 4- dinitrotoluene (DNT) has been explored as a potential odor compound, the possibility of a nitrated explosive inherently producing nitrated gas upon decomposition has not. Stage Two of this study focused on evaluating nitrate as a potential cause of canine alerts. An LC/MS method for the detection of nitrate ions in Composition C-4 and
flake trinitrotoluene (TNT) was developed and tested. Instrumental analysis was not successful in detecting nitrate ions in any of the explosives tested. The lack of nitrate was
confirmed using a diphenylamine color test for nitrates, thus eliminating nitrate as an odor compound and cause of canine alert to nitroaromatic compounds.
2, 4-DNT has been introduced as a potential odor compound of TNT, however,
the mechanisms behind its vapor emission have not been thoroughly explored. More
specifically, due to the “sticky” nature of the 2, 4-DNT isomer, the effects of surface adhesion to container walls are of concern. In particular, whether the amount of material lost to surface adhesion is significant enough to effect canine detection of TNT. A second
focus of Stage Two explored this concern. A GC/MS method for the detection and separation of TNT and DNT isomers in liquid extracts was developed and the amount of 2, 4-DNT residues adhering to container walls was quantified. These values, compared to
the amount 2,4-DNT expected to saturate each container (determined by the Ideal Gas Law), showed a significant preference of 2,4-DNT in the solid phase as opposed to in the gas phase. The amount of residue adhering to the walls of a gallon can differed from expected values by nearly 70%. The amount of material extracted from a quart can
exceeded expected values by 137%. The apparent sticky nature of 2, 4-DNT resulted in a significant loss of material needed to fully saturate a container and thus canine detection
success may be affected.
In the final stage of this study, theories regarding odor compounds and odor availability of nitromethane, TNT, and Composition C-4 were tested using certified explosives-detecting canines. These trials included thirty-three canine-handler teams from eight government agencies. The odor availability of nitromethane was tested by placing varying volumes of nitromethane in containers with differing degrees of confinement and studying the effects on canine detection success. The odor availability trial showed no significant effect of sample amount or degree of confinement on canine
detection so long as the sample volume was sufficient to saturate its container. In this study that volume was determined to be < 1 mL. Detection of 2, 4-DNT, TNT-NESST (Non-Hazardous Explosives for Security Training and Testing), and flake TNT were also studied using certified canines. The
purpose of this was to identify the odorant responsible for canine alert to the explosive TNT. These trials showed a significant response to 2, 4-DNT compared to TNT and its training aid; this suggests that 2, 4-DNT is the primary cause of canine alerts to TNT.
Additionally, Composition C-4 and RDX-NESTT were tested along with potential odor compounds that included the manufacturing solvent, cyclohexanone, the energetic “taggant” 2, 3-dimethyl-2.3-dinitrobutane (DMNB), the plasticizer dioctyladipate (DOA)
and its degradation product 2-ethyl-1-hexanol. While some response to DMNB and cyclohexanone was seen, the most significant response was to the actual Composition C-4. This suggests that the cause of canine alert to Composition C-4 is the explosive mixture as a whole and not a single chemical component of the mixture
|
Page generated in 0.0955 seconds