• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 94
  • 32
  • 17
  • 9
  • 7
  • 6
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 449
  • 130
  • 77
  • 62
  • 54
  • 49
  • 47
  • 47
  • 46
  • 41
  • 40
  • 38
  • 35
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Utilising airborne scanning laser (LiDAR) to improve the assessment of Australian native forest structure

Lee, Alex C., alexanderlee@aapt.net.au January 2008 (has links)
Enhanced understanding of forest stocks and dynamics can be gained through improved forest measurement, which is required to assist with sustainable forest management decisions, meet Australian and international reporting needs, and improve research efforts to better respond to a changing climate. Integrated sampling schemes that utilise a multi-scale approach, with a range of data sourced from both field and remote sensing, have been identified as a way to generate the required forest information. Given the multi-scale approach proposed by these schemes, it is important to understand how scale potentially affects the interpretation and reporting of forest from a range of data. ¶ To provide improved forest assessment at a range of scales, this research has developed a strategy for facilitating tree and stand level retrieval of structural attributes within an integrated multi-scale analysis framework. The research investigated the use of fine-scale (~1m) airborne Light Detection and Ranging (LiDAR) data (1,125 ha in central Queensland, and 60,000 ha in NE Victoria) to calibrate other remotely sensed data at the two study sites. The strategy refines forest structure mapping through three-dimensional (3D) modelling combined with empirical relationships, allowing improved estimation of maximum and predominant height, as well as foliage and crown cover at multiple scales. Tree stems (including those in the sub-canopy) were located using a height scaled crown openness index (HSCOI), which integrated the 3D density of canopy elements within the vertical profile into a two-dimensional spatial layer. The HSCOI modelling also facilitated the reconstruction of the 3D distribution of foliage and branches (of varying size and orientation) within the forest volume. ¶ Comparisons between forests at the Queensland and NE Victorian study sites indicated that accurate and consistent retrieval of cover and height metrics could be achieved at multiple scales, with the algorithms applicable for semi-automated use in other forests with similar structure. This information has facilitated interpretation and evaluation of Landsat imagery and ICESat satellite laser data for forest height and canopy cover retrieval. The development of a forest cover translation matrix allows a range of data and metrics to be compared at the plot scale, and has initiated the development of continuous transfer functions between the metrics and datasets. These data have been used subsequently to support interpretation of SAR data, by providing valuable input to 2D and 3D radar simulation models. Scale effects have been identified as being significant enough to influence national forest class reporting in more heterogeneous forests, thus allowing the most appropriate use and integration of remote sensed data at a range of scales. An empirically based forest minimum mapping area of 1 ha for reporting is suggested. The research has concluded that LiDAR can provide calibration information just as detailed and possibly more accurately than field measurements for many required forest attributes. Therefore the use of LiDAR data offers a unique opportunity to bridge the gap between accurate field plot structural information and stand to landscape scale sampling, to provide enhanced forest assessment in Australia.
12

A characterization of unmanaged riparian overstories in the central Oregon Coast Range /

Nierenberg, Tara R. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 1997. / Typescript (photocopy). Includes bibliographical references (leaves 123-134). Also available on the World Wide Web.
13

Urban Trees : A case study in central Umeå

Sundelin, Maria January 2023 (has links)
Urban trees are crucial to a healthy environment. The benefits range from good air quality to storm water management and public health. The aim of this thesis was to study urban trees in Umeå city. Umeå is in a process of densification and has a vision to increase in population to 200 000 by the year 2050. During densification, trees are often removed to make space for buildings and streets. To keep track of the trees in an urban area, an analysis of the share of canopy cover can be done. For this thesis, the city enter in Umeå has been analyzed to find out the share of trees, vegetation, imposturous ground, buildings, and water that makes up the land cover. This through a canopy cover analysis using the software i-Tree Canopy. The results show that the overall share of urban trees has decreased since 2007 and the share of buildings have increased, an evident effect of densification. In addition to analyzing canopy cover, the change in amount and location of municipally owned trees has also been analyzed. This analysis presented a contradictory view of urban trees, where the number of trees has increased. A reason for this could be that while the municipality has programs in place to plant and manage trees, privately owned trees are not being monitored. There are obstacles with the aim to increase the number of urban trees in a dense city. The increasing amount of imposturous ground and building makes the environment hard for trees to thrive in. The roots have not enough space to grow, and the trees are prone to damages. This results in trees that does not live very long before they have to be removed and replaced, which has negative effect on the environment. Preserving trees with large canopies and at the same time planting new ones are important parts in keeping a sustainable urban area. Analyzing canopy cover and the change over time is a way to learn and prepare for future urban planning in Umeå.
14

Flow characteristics in partially vegetated channel with homogeneous and heterogeneous layouts

Li, D., Huai, W., Guo, Yakun, Liu, M. 22 March 2022 (has links)
Yes / This study presents the experimental results of the flow characteristics, such as the flow adjustment, velocity profiles, mixing layer, and the momentum exchange, in the partially vegetated channel with homogeneous and heterogeneous layouts. Three cases are considered, including two homogeneous canopies with uniform sparse and dense vegetation patches respectively, and a heterogeneous canopy consisting of alternating patches of both densities. Results show that heterogeneous canopy requires a longer adjustment distance to reach the quasi-equilibrium region, compared with the homogenous canopy of the same density. In heterogeneous canopy flow, the mixing layer width and the momentum thickness fluctuates with the alternation of vegetation density. The increased values for these two parameters compared to those values for the homogeneous canopies indicate that the greater resistance and momentum loss occur for the heterogeneous layout. A wavy region of the enhanced in-plane turbulence kinetic energy (TKE) is observed in the heterogeneous canopy, suggesting a comparatively more chaotic flow condition, whereas the contours of in-plane TKE are smooth in homogeneous canopies. The presence of the coherent structures in heterogeneous canopy is identified by spectral analysis and the quasi-periodic fluctuations of velocities. The Reynolds stress associated with the coherent structures is found to be the dominator of the contribution to the total Reynolds stress. The comparison between the homogenous canopies of different density is also conducted. These results will be of practical importance for the design of vegetation layouts in water ecological restoration projects and for river management. / National Natural Science Foundation of China (grant numbers 52020105006 and 11872285) and the Open Funding of State Key Laboratory of Water Resources and Hydropower Engineering Science (WRHES), Wuhan University (Project number 2018HLG01)
15

The fate of canopy water in the Findley Lake basin, WA /

Rombold, John Sumner. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 229-248).
16

Integration of multisensor airborne data for an object based spectral classification

Stephen, Roger 26 August 2014 (has links)
Integration of multisensor airborne data for object based image analysis, and spectral classification of individual trees is complicated by the multi-modal operation of complimentary sensors required for intersensor calibration. Simplified and generalized representations of sensor data impacts the ability to calibrate, rectify, segment, and extract scene objects represented as differing scales. This research project examines the effect and implications of using lidar to calibrate, and rectify airborne imaging spectrometer to an appropriate resolution digital surface model. Through the use of a normalized digital canopy surface model, tree objects are detected and integrated with field surveyed species data for trees of classification interest. Canopy structure is used to segment, and extract airborne imaging spectrometer data for assessment and suitability in species classification. / Graduate
17

Cerulean warbler selection of forest canopy gaps

Perkins, Kelly A. January 2006 (has links)
Thesis (M.S.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains vii, 89 p. : ill. Includes abstract. Includes bibliographical references.
18

Effects of riparian woody vegetation encroachment on prairie stream structure and function with emphasis on whole-stream metabolism

Riley, Alyssa J. January 1900 (has links)
Doctor of Philosophy / Department of Biology / Walter K. Dodds / Much of the North American tallgrass prairie ecosystem has been converted to cropland or urbanized. One threat to the remaining prairie ecosystems, and the streams within, is woody vegetation encroachment. Stream productivity, measured as metabolism, is a fundamental process comprised of gross primary production (GPP) and (CR) community respiration. Understanding GPP and CR is important because these processes are vital to ecosystem function and can be impacted by a change in canopy cover. First, I investigated improvements in existing methods for estimating whole-stream metabolism as estimated from diel patterns of oxygen (O2). I compared measured and modeled O2 and aeration (a physical parameter required for measurement of metabolism) rates to determine if direct measurement of aeration is necessary and the importance of temperature correction of metabolism. Modeling was moderately successful in determining aeration rates, and temperature correction of GPP and CR substantially improved model fits. Second, effects of woody vegetation encroachment on prairie stream function were investigated. Stream metabolism was measured for four years in duplicate reaches with varying canopy cover (closed canopy, naturally open canopy, and vegetation removal reaches). The removal reaches had closed canopy for the first two years and open canopy for the last two years. Canopy cover increased CR rates and had minimal effects on GPP. Third, the same experiment was used to determine the effects of woody vegetation encroachment on prairie stream ecosystem structure and food web interactions. Chlorophyll a and filamentous algal biomass were greater in naturally open and vegetation removal reaches, although the effects were stronger on filamentous algal biomass. As canopy cover decreased, the filamentous algal biomass to chlorophyll ratio increased, indicating a shift in algal community structure. Stable isotope analysis indicated some shift in pathways of nitrogen and carbon flux into the food web related to degree of canopy cover, but overlap in the signature of food sources made distinct food sources difficult to identify. The data indicate that riparian encroachment can influence ecosystem structure and function in prairie streams and restoration to remove woody riparian cover may restore some ecosystem features of naturally open canopy streams.
19

Spatio-temporal variability in rainfall and wet-canopy evaporation within a small catchment recovering from selective tropical forestry

Bidin, Kawi January 2001 (has links)
No description available.
20

Modelling herbicide and nitrogen effects on crop-weed competition

Kim, Do-Soon January 2000 (has links)
No description available.

Page generated in 0.0346 seconds