Spelling suggestions: "subject:"canopy architecture"" "subject:"eanopy architecture""
1 |
The Impact of Prohexadione-calcium on Grape Vegetative and Reproductive Development and Wine ChemistryLo Giudice, Danielle 23 May 2002 (has links)
Prohexadione-calcium (P-ca), as ApogeeTM, was evaluated in 2000 and 2001 for impact to grape vegetative and reproductive development. In 2000, P-ca (250 mg/L) was applied to Seyval, Cabernet Sauvignon, and Cabernet franc (125, 250, and 375 mg/L). P-ca reduced primary shoot growth for all cultivars and decreased cane pruning weight of Seyval. P-ca (375 mg/L) increased Cabernet franc canopy gaps but increased Cabernet Sauvignon lateral leaf area and leaf layer number. P-ca reduced components of yield for all cultivars. In 2001, P-ca (250 mg/L) was applied singularly at weekly intervals to Cabernet Sauvignon clusters and pre and post-bloom to Cabernet franc and Chardonnay canopies. Application at E-L stages 21 and 23 decreased Cabernet Sauvignon fruit set whereas application at E-L stages 26, 27, and 29 reduced berry weight without impacting fruit set. Berry weight reduction correlated to higher color intensity (420+520 nm), anthocyanins, total phenols and phenol-free glycosyl-glucose (PFGG). Cabernet franc vegetative and reproductive development was generally not affected yet treatment increased absorbance at 280, 420, and 520 nm, color intensity, anthocyanins and total phenols. Pre-bloom applications inhibited Chardonnay vegetative development, and reduced components of yield, and fruit chemistry values: hydroxycinnamates, total phenols, flavonoids, PPFG and absorbance at 280 and 320 nm. Post-bloom applications did not affect Chardonnay vegetative or reproductive development, yet increased PFGG. Treatment did not affect Chardonnay wine chemistry but two post-bloom applications increased Cabernet franc wine anthocyanins and total phenols. Wine aroma and flavor triangle difference tests did not indicate significant treatment differences. / Master of Science
|
2 |
CONSEQUENCES OF SHRUB ENCROACHMENT: LINKING CHANGES IN CANOPY STRUCTURE TO SHIFTS IN THE RESOURCE ENVIRONMENTBrantley, Steven 22 April 2009 (has links)
Shrub expansion in herbaceous ecosystems is emerging as an important ecological response to global change, especially in mesic systems where increases in canopy biomass are greatest. Two consequences of woody encroachment are increases in belowground resources, such as carbon and nitrogen, and reductions in above-ground resources such as light, which affect diversity, community trajectory, and ecosystem function. My objective was to determine how expansion of the nitrogen-fixing shrub Morella cerifera affected the resource environment across a chronosequence of shrub expansion on a Virginia barrier island. I quantified changes in carbon (C) and nitrogen (N) cycling, canopy structure and understory light associated with M. cerifera expansion. Litterfall in shrub thickets exceeded litterfall for other woody communities in the same region, and due to high N concentration, resulted in a return of as much as 169 kg N ha-1 yr-1 to the soil, 70% of which was from symbiotic N fixation. Litter and soil C and N pools were 3-10 times higher in shrub thickets than in adjacent grasslands. Understory light in shrub thickets decreased to as low as 0.5% of above-canopy light. Sunflecks in shrub thickets were shorter, smaller and less intense than sunflecks in forest understories. However, relative to other shrub species such as Elaeagnus umbellata, M. cerifera was less efficient at intercepting light. Although M. cerifera had the highest leaf area index (LAI) of five shrub species studied, M. cerifera was relatively inefficient at light attenuation due to low levels of branching, steep leaf angles and a relatively shallow canopy. The shift from grassland to shrub thicket on barrier islands, and in other mesic systems, results in a significant change in canopy structure that alters understory resource availability and greatly alters ecosystem function and trajectory.
|
3 |
Understanding the partitioning of rainfall by the maize canopy through computational modelling and physical measurementsFrasson, Renato Prata de Moraes 01 December 2011 (has links)
The interception and redirection of rainfall by vegetation has implications for many fields such as remote sensing of soil moisture, satellite observation of rainfall, and the modeling of runoff, climate, and soil erosion. Although the modeling of rainfall partitioning by forests has received attention in the past, partitioning caused by crops has been overlooked. The present work proposes a two front experimental and computational methodology to comprehensively study rainfall interception and partitioning by the maize canopy. In the experimental stage, we deployed two compact weather stations, two optical disdrometers, and five tipping bucket rain gauges. Two of the tipping bucket rain gauges were modified to measure throughfall while two were adapted to measure stemflow. The first optical disdrometer allowed for inspection of the unmodified drop-size and velocity distributions, whereas the second disdrometer measured the corresponding distributions under the canopy. This indicates that the outcome of the interaction between the hydrometeors and the canopy depends on the drop diameter.
In the computational stage, we created a model that uses drop-size and velocity distributions as well as a three-dimensional digital canopy to simulate the movement of raindrops on the surfaces of leaves. Our model considers interception, redirection, retention, coalescence, breakup, and re-interception of drops to calculate the stemflow, throughfall, and equivalent height of precipitation stored on plants for a given storm. Moreover, the throughfall results are presented as two-dimensional matrices, where each term corresponds to the accumulated volume of drops that dripped at a given location. This allows insight into the spatial distribution of throughfall beneath the foliage. Finally, we examine the way in which the maize canopy modifies the drop-size distribution by recalculating the drop velocity based on the raindrop's size and detachment height and by storing the counts of drops in diameter-velocity classes that are consistent with the classes used by disdrometers in the experimental study.
|
4 |
On the Mechanistic Connection of Forest Canopy Structure with Productivity and Demography in the AmazonStark, Scott C. January 2012 (has links)
Canopy structure has long been thought to influence the productivity and ecological dynamics of tropical forests by altering the availability of light to leaves. Theories and methods that can connect detailed quantitative observations of canopy structure with forest dynamics, however, have been lacking. There is urgent need to resolve this uncertainty because human-caused climate change may alter canopy structure and function in the Amazon. This work addresses this problem by, first, developing methods based on LiDAR remote sensing of fine-scale structural variation to predict the spatial structure of leaf area and light in forest canopies of the central Amazon (Appendices B&C). I show that LiDAR-based leaf area and light estimates can be used to predict the productivity of tree size groups and one-hectare forest plots--as well as differences between 2 sites separated by 500km (App. B). Sites also differed in canopy structure and the distribution of tree frequencies over size (size or diameter distribution). A model based on tree architecture, however, was able to connect observed differences in canopy architecture with size distributions to predict plot and site differences (App. D). This model showed that tree architecture is plastic in different light environments. While plasticity may increase light absorption, the smallest size groups appeared light limited. Absorption over size groups in one site, but not the other, agreed with the hypothesis of energetic equivalence across size structure. Ultimately, the performance of individual trees of different sizes in different canopy environments links forest demography with canopy structure and ecosystem function--I present a study aimed at improving tests of individual level theories for the role of light dependence in tree growth (App. A). Together, this work quantitatively connects canopy structure with forest carbon dynamics and demographic structure and further develops LiDAR as premier tool for studying forest ecological dynamics. Assessing variation in biomass growth and demographic structure over tropical landscapes with remote sensing will improve understanding of ecosystem function and the role of the Amazon in global Carbon dynamics.
|
5 |
Intérêt de la diversité architecturale des plantes cultivées pour limiter la progression épidémique de maladies foliaires à dispersion pluviale : cas de la septoriose au sein d'associations variétales de blé / Interest of architectural diversity of cultivated plants in order to limit the epidemic progression of splashed-dispersed leaf diseases : case of septoria tritici blotch in wheat cultivar mixturesVidal, Tiphaine 28 March 2017 (has links)
La culture d’associations de variétés sensibles et résistantes au sein d’une même parcelle permet de réduire la propagation des maladies fongiques foliaires aériennes. L’architecture des plantes a un impact sur la dispersion de spores et le microclimat, mais est rarement prise en compte dans la conception des associations. L’objectif de cette thèse était de comprendre le rôle joué par l’architecture dans des associations de variétés différant par leur niveau de résistance à une maladie dispersée par éclaboussement, la septoriose du blé, causée par Zymoseptoria tritici. Une expérimentation en conditions contrôlées a permis de quantifier des relations entre interception de spores et architecture des couverts. Des différences de densité entre couverts purs et associés ont donné lieu à une réduction du niveau de maladie sur les plantes sensibles cultivées en association par rapport à celles cultivées pures. Lors d’une expérimentation au champ, les associations de variétés de hauteurs de tiges contrastées étaient moins malades que celles ayant des hauteurs similaires. Ces résultats ont été mis en relation avec des effets de l’architecture sur la dispersion de spores et la durée d’humectation au sein des couverts. Une approche de modélisation spatialement explicite a permis d’identifier des mécanismes de dispersion par éclaboussement liés à l’architecture des couverts associés. Dans des associations de variétés de hauteurs différentes, la quantité d’inoculum éclaboussée dépendait de la surface foliaire présente au dessus des feuilles malades (effet parapluie). La quantité d’inoculum interceptée par un étage foliaire était liée à la différence de hauteur entre la source d’inoculum et l’étage foliaire (effet hauteur). Les différences de hauteur de plantes entre variétés d’une association ont modulé l’interception de spores par des feuilles résistantes (effet barrière). Nos résultats suggèrent qu’une prise en compte de l’architecture des variétés dans la conception des associations variétales permettrait de mieux maîtriser les maladies par éclaboussement. / Growing mixtures of susceptible and resistant cultivars in the same field makes it possible to reduce the propagation of airborne fungal plant diseases. Plant architecture has an impact on spore dispersal or microclimate, but is rarely taken into account in mixture design. The objective of this work was to understand the role of canopy architecture in mixtures of cultivar of different levels of resistance to a disease dispersed by rain-splash, septoria tritici blotch, caused by Zymoseptoria tritici. A controlled conditions experiment made it possible to quantify relationships between spore interception and canopy architecture. Differences of canopy density between pure stands and mixtures led to a reduction in disease on susceptible plants grown in mixture, compared to the susceptible pure stand. During a field experiment, mixtures of cultivars with contrasted stem height were less diseased than those with similar stem height. These results were related to the effect of canopy architecture on spore dispersal and leaf wetness duration. A spatially explicit modeling approach made it possible to identify splash dispersal mechanisms related to the architecture of mixed canopies. In mixtures of cultivar with diverse plant height, the amount of splashed inoculum depended on leaf area located above diseased leaves (umbrella effect). The amount of inoculum intercepted by a leaf layer was related to its difference of height between the inoculum sources (height effect). Differences of plant height between cultivars composinga mixture modulated the interception of spores by resistant leaves, providing an increased protection of susceptible leaves (barrier effect). Our results suggest that considering cultivar architecture in the design of cultivar mixtures could make it possible to improve the management of splash-dispersed diseases.
|
6 |
Canopy Architecture and Plant Density Effect in Short-Season Chickpea (Cicer arietinum L.)Vanderpuye, Archibald W. 22 September 2010
Chickpea (Cicer arietinum L.) production on the semi-arid Canadian Prairies is challenging due to a short growing season and low and variable moisture. The current recommended chickpea population density of 44 plants m-2 is based on preliminary studies and a narrow range of 20 to 50 plants m-2. The aims of this study were to i) determine optimum population density of varying chickpea canopy types, i.e., leaf type and growth habit, by investigating seed yield responses at 30 to 85 plants m-2 and ii) identify desirable parental traits for breeding programs by assessing growth and yield parameter responses to varying leaf types and growth habits at a range of population densities. Field experiments were conducted from 2002 to 2005. Canopy measurements and calculated variables included light interception, biomass, growth rate, seed yield, harvest index, ascochyta blight severity and radiation- and water use efficiencies.
The plant density which produced the highest seed yield when averaged over years for each location for each treatment revealed that a plant density of at least 55 plants m-2 produced a 23% to 49% seed yield increase above that of the currently recommended plant density. This indicates that a higher seed yield average over the long term in spite of periodic low seed yield episodes will be more profitable to producers. Increasing plant density increased lowest pod height significantly in all except one location-year but did not explicitly increase ascochyta blight severity or decrease individual seed size. This suggests that increasing the recommended chickpea plant density on the Canadian Prairies will increase seed yield but would neither negatively impact individual seed size nor ascochyta blight severity, especially, when combined with good agronomic practices.
Fern-leaved cultivars had significantly higher maximum intercepted light (62 to 91%), seed yield (136 to 369 g m-2), harvest index (0.33 to 0.53), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and lower ascochyta blight severity (3 to 27%) than the unifoliate cultivars in all location-years. The fern-leaved cultivars also tended to show significantly higher cumulative intercepted radiation (221 to 419 MJ m-2) and biomass (306 to 824 g m-2) but leaf type showed no consistent effect on radiation use efficiency.
Cultivars with bushy growth habit generally performed better regarding maximum intercepted light (62 to 90%), cumulative intercepted radiation (233 to 421 MJ m-2), biomass (314 to 854 MJ m-2), seed yield (120 to 370 g m-2), harvest index (0.37 to 0.50), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and ascochyta blight severity (7 to 36%) than the erect cultivars. The overall performance of the spreading cultivar was generally intermediate between the bushy and erect cultivars except for ascochyta blight severity where the spreading cultivar exhibited significantly lower disease severity (3 to 36%). Radiation use efficiency was generally not influenced by growth habit.
Increasing plant population density generally increased intercepted light, biomass and cumulative intercepted radiation on each sampling day after seeding resulting in a general increase in seed yield. Harvest index, however, remained constant and ascochyta blight severity was generally stable but radiation use efficiency decreased with increasing population density. Chickpea cultivars with fern leaves and bushy growth habit at higher than currently recommended population densities would best utilize the limited resources of the short-season Canadian prairie environment to maximize and stabilize seed yield.
|
7 |
Canopy Architecture and Plant Density Effect in Short-Season Chickpea (Cicer arietinum L.)Vanderpuye, Archibald W. 22 September 2010 (has links)
Chickpea (Cicer arietinum L.) production on the semi-arid Canadian Prairies is challenging due to a short growing season and low and variable moisture. The current recommended chickpea population density of 44 plants m-2 is based on preliminary studies and a narrow range of 20 to 50 plants m-2. The aims of this study were to i) determine optimum population density of varying chickpea canopy types, i.e., leaf type and growth habit, by investigating seed yield responses at 30 to 85 plants m-2 and ii) identify desirable parental traits for breeding programs by assessing growth and yield parameter responses to varying leaf types and growth habits at a range of population densities. Field experiments were conducted from 2002 to 2005. Canopy measurements and calculated variables included light interception, biomass, growth rate, seed yield, harvest index, ascochyta blight severity and radiation- and water use efficiencies.
The plant density which produced the highest seed yield when averaged over years for each location for each treatment revealed that a plant density of at least 55 plants m-2 produced a 23% to 49% seed yield increase above that of the currently recommended plant density. This indicates that a higher seed yield average over the long term in spite of periodic low seed yield episodes will be more profitable to producers. Increasing plant density increased lowest pod height significantly in all except one location-year but did not explicitly increase ascochyta blight severity or decrease individual seed size. This suggests that increasing the recommended chickpea plant density on the Canadian Prairies will increase seed yield but would neither negatively impact individual seed size nor ascochyta blight severity, especially, when combined with good agronomic practices.
Fern-leaved cultivars had significantly higher maximum intercepted light (62 to 91%), seed yield (136 to 369 g m-2), harvest index (0.33 to 0.53), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and lower ascochyta blight severity (3 to 27%) than the unifoliate cultivars in all location-years. The fern-leaved cultivars also tended to show significantly higher cumulative intercepted radiation (221 to 419 MJ m-2) and biomass (306 to 824 g m-2) but leaf type showed no consistent effect on radiation use efficiency.
Cultivars with bushy growth habit generally performed better regarding maximum intercepted light (62 to 90%), cumulative intercepted radiation (233 to 421 MJ m-2), biomass (314 to 854 MJ m-2), seed yield (120 to 370 g m-2), harvest index (0.37 to 0.50), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and ascochyta blight severity (7 to 36%) than the erect cultivars. The overall performance of the spreading cultivar was generally intermediate between the bushy and erect cultivars except for ascochyta blight severity where the spreading cultivar exhibited significantly lower disease severity (3 to 36%). Radiation use efficiency was generally not influenced by growth habit.
Increasing plant population density generally increased intercepted light, biomass and cumulative intercepted radiation on each sampling day after seeding resulting in a general increase in seed yield. Harvest index, however, remained constant and ascochyta blight severity was generally stable but radiation use efficiency decreased with increasing population density. Chickpea cultivars with fern leaves and bushy growth habit at higher than currently recommended population densities would best utilize the limited resources of the short-season Canadian prairie environment to maximize and stabilize seed yield.
|
Page generated in 0.1193 seconds