• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse et construction de codes LDPC non-binaires pour des canaux à évanouissement

Gorgoglione, Matteo 25 October 2012 (has links) (PDF)
Au cours des 15 dernières années, des progrès spectaculaires dans l'analyse et la conception des codes définis par des graphes bipartites et dé-codables par des algorithmes itératifs ont permis le développement de systèmes de correction d'erreurs, avec des performances de plus en plus proches la limite théorique de Shannon. Dans ce contexte, un rôle déterminant a été joué par la famille des codes à matrice de parité creuse, appelés codes LDPC (pour " Low-Density Parity-Check ", en anglais), introduit par Gallager au début des années 60 et décrits plus tard en termes de graphes bipartites. Négligés pendant de longues années, ces codes ont été redécouverts à la fin des années 90, après que la puissance du décodage itératif a été mise en évidence grâce à l'invention des Turbo-codes. Ce n'est qu'au début des années 2000 que les techniques nécessaires à l'analyse et l'optimisation des codes LDPC ont été développées, techniques qui ont permis ensuite la construction des codes avec des performances asymptotiques proches de la limite de Shannon. Cette remarquable avancée a motivé l'intérêt croissant de la communauté scientifique et soutenu le transfert rapide de cette technologie vers le secteur industriel. Plus récemment, un intérêt tout particulier a été porté aux codes LDPC définis sur des alphabets non-binaires, grâce notamment à leur meilleure capacité de correction en " longueur finie ". Bien que Gallager ait déjà proposé l'utilisation des alphabets non-binaires, en utilisant l'arithmétique modulaire, les codes LDPC non-binaires définis sur les corps finis n'ont étés étudiés qu'à partir de la fin des années 90. Il a été montré que ces codes offrent de meilleures performances que leurs équivalents binaires lorsque le bloc codé est de longueur faible à modérée, ou lorsque les symboles transmis sur le canal sont eux-mêmes des symboles non-binaires, comme par exemple dans le cas des modulations d'ordre supérieur ou des canaux à antennes multiples.Cependant, ce gain en performance implique un coût non négligeable en termes de complexité de décodage, quipeut entraver l'utilisation des codes LDPC non binaires dans des systèmes réels, surtout lorsque le prix à payer encomplexité est plus important que le gain en performance.Cette thèse traite de l'analyse et de la conception des codes LDPC non binaires pour des canaux à évanouissements. L'objectif principal de la thèse est de démontrer que, outre le gain en performance en termes de capacité de correction, l'emploi des codes LDPC non binaires peut apporter des bénéfices supplémentaires,qui peuvent compenser l'augmentation de la complexité du décodeur. La " flexibilité " et la " diversité "représentent les deux bénéfices qui seront démontrées dans cette thèse. La " flexibilité " est la capacité d'unsystème de codage de pouvoir s'adapter à des débits (rendements) variables tout en utilisant le même encodeuret le même décodeur. La " diversité " se rapporte à sa capacité d'exploiter pleinement l'hétérogénéité du canal de communication.La première contribution de cette thèse consiste à développer une méthode d'approximation de l'évolution de densité des codes LDPC non-binaires, basée sur la simulation Monte-Carlo d'un code " infini ". Nous montrons que la méthode proposée fournit des estimations très fines des performances asymptotiques des codes LDPCnon-binaires et rend possible l'optimisation de ces codes pour une large gamme d'applications et de modèles de canaux.La deuxième contribution de la thèse porte sur l'analyse et la conception de système de codage flexible,utilisant des techniques de poinçonnage. Nous montrons que les codes LDPC non binaires sont plus robustes au poinçonnage que les codes binaires, grâce au fait que les symboles non-binaires peuvent être partialement poinçonnés. Pour les codes réguliers, nous montrons que le poinçonnage des codes non-binaires obéit à des règles différentes, selon que l'on poinçonne des symboles de
2

Analyse et construction de codes LDPC non-binaires pour des canaux à evanouissement / Analysis and Design of Non-Binary LDPC Codes over Fading Channels

Gorgoglione, Matteo 25 October 2012 (has links)
Au cours des 15 dernières années, des progrès spectaculaires dans l'analyse et la conception des codes définis par des graphes bipartites et dé-codables par des algorithmes itératifs ont permis le développement de systèmes de correction d'erreurs, avec des performances de plus en plus proches la limite théorique de Shannon. Dans ce contexte, un rôle déterminant a été joué par la famille des codes à matrice de parité creuse, appelés codes LDPC (pour « Low-Density Parity-Check », en anglais), introduit par Gallager au début des années 60 et décrits plus tard en termes de graphes bipartites. Négligés pendant de longues années, ces codes ont été redécouverts à la fin des années 90, après que la puissance du décodage itératif a été mise en évidence grâce à l'invention des Turbo-codes. Ce n'est qu'au début des années 2000 que les techniques nécessaires à l'analyse et l'optimisation des codes LDPC ont été développées, techniques qui ont permis ensuite la construction des codes avec des performances asymptotiques proches de la limite de Shannon. Cette remarquable avancée a motivé l'intérêt croissant de la communauté scientifique et soutenu le transfert rapide de cette technologie vers le secteur industriel. Plus récemment, un intérêt tout particulier a été porté aux codes LDPC définis sur des alphabets non-binaires, grâce notamment à leur meilleure capacité de correction en « longueur finie ». Bien que Gallager ait déjà proposé l'utilisation des alphabets non-binaires, en utilisant l'arithmétique modulaire, les codes LDPC non-binaires définis sur les corps finis n'ont étés étudiés qu'à partir de la fin des années 90. Il a été montré que ces codes offrent de meilleures performances que leurs équivalents binaires lorsque le bloc codé est de longueur faible à modérée, ou lorsque les symboles transmis sur le canal sont eux-mêmes des symboles non-binaires, comme par exemple dans le cas des modulations d'ordre supérieur ou des canaux à antennes multiples.Cependant, ce gain en performance implique un coût non négligeable en termes de complexité de décodage, quipeut entraver l'utilisation des codes LDPC non binaires dans des systèmes réels, surtout lorsque le prix à payer encomplexité est plus important que le gain en performance.Cette thèse traite de l'analyse et de la conception des codes LDPC non binaires pour des canaux à évanouissements. L'objectif principal de la thèse est de démontrer que, outre le gain en performance en termes de capacité de correction, l'emploi des codes LDPC non binaires peut apporter des bénéfices supplémentaires,qui peuvent compenser l'augmentation de la complexité du décodeur. La « flexibilité » et la « diversité »représentent les deux bénéfices qui seront démontrées dans cette thèse. La « flexibilité » est la capacité d'unsystème de codage de pouvoir s'adapter à des débits (rendements) variables tout en utilisant le même encodeuret le même décodeur. La « diversité » se rapporte à sa capacité d'exploiter pleinement l'hétérogénéité du canal de communication.La première contribution de cette thèse consiste à développer une méthode d'approximation de l'évolution de densité des codes LDPC non-binaires, basée sur la simulation Monte-Carlo d'un code « infini ». Nous montrons que la méthode proposée fournit des estimations très fines des performances asymptotiques des codes LDPCnon-binaires et rend possible l'optimisation de ces codes pour une large gamme d'applications et de modèles de canaux.La deuxième contribution de la thèse porte sur l'analyse et la conception de système de codage flexible,utilisant des techniques de poinçonnage. Nous montrons que les codes LDPC non binaires sont plus robustes au poinçonnage que les codes binaires, grâce au fait que les symboles non-binaires peuvent être partialement poinçonnés. Pour les codes réguliers, nous montrons que le poinçonnage des codes non-binaires obéit à des règles différentes, selon que l'on poinçonne des symboles de / Over the last 15 years, spectacular advances in the analysis and design of graph-basedcodes and iterative decoding techniques paved the way for the development of error correctionsystems operating very close to the theoretical Shannon limit. A prominent rolehas been played by the class of Low Density Parity Check (LDPC) codes, introduced inthe early 60's by Gallager's and described latter in terms of sparse bipartite graphs. In theearly 2000's, LDPC codes were shown to be capacity approaching codes for a wide rangeof channel models, which motivated the increased interest of the scientific community andsupported the rapid transfer of this technology to the industrial sector. Over the past fewyears there has been an increased interest in non-binary LDPC codes due to their enhancedcorrection capacity. Although Gallager already proposed in his seminal work the use ofnon-binary alphabets (by using modular arithmetic), non-binary LDPC codes defined overfinite fields have only been investigated starting with the late 90's. They have been provento provide better performance than their binary counterparts when the block-length issmall to moderate, or when the symbols sent through channel are not binary, which is thecase for high-order modulations or for multiple-antennas channels. However, the performancegain comes at a non-negligible cost in the decoding complexity, which may prohibitthe use of non-binary LDPC codes in practical systems, especially when the price to payin decoding complexity is too high for the performance gain that one can get.This thesis addresses the analysis and design of non-binary LDPC codes for fadingchannels. The main goal is to demonstrate that besides the gain in the decoding performance,the use of non-binary LDPC codes can bring additional benefits that may offsetthe extra cost in decoding complexity. Flexibility and diversity are the two benefitsthat we demonstrate in this thesis. The exibility is the capacity of a coding system toaccommodate multiple coding rates through the use of a unique encoder/decoder pair. Thediversity of a coding system relates to its capacity to fully exploit the communicationchannel's heterogeneity.The first contribution of the thesis is the development of a Density Evolution approximationmethod, based on the Monte-Carlo simulation of an infinite code. We showthat the proposed method provides accurate and precise estimates of non-binary ensemblethresholds, and makes possible the optimization of non-binary codes for a wide range ofapplications and channel models.The second contribution of the thesis consists of the analysis and design of flexiblecoding schemes through the use of puncturing. We show that the non-binary LDPCcodes are more robust to puncturing than their binary counterparts, thanks to the factthat non-binary symbol-nodes can be only partially punctured. For regular codes, we showthat the design of puncturing patterns must respect different rules depending on whetherthe symbol-nodes are of degree 2 or higher. For irregular codes we propose an optimizationprocedure and we present optimized puncturing distributions for non-binary LDPC codes,iiiwhich exhibit a gap to capacity between 0.2 and 0.5dB , for punctured rates varying from0.5 to 0.9.The third contribution investigates the non-binary LDPC codes transmitted over aRayleigh (fast) fading channel, in which different modulated symbols are affected by differentfading factors. In case of one-to-one correspondence between modulated and codedsymbols, deep fading can make some coded symbols totally unrecoverable, leading to apoor system performance. In order to avoid this phenomenon, binary diversity can beexploited by using a bit-interleaver module placed between the encoder and the modulator.We propose an optimized interleaving algorithm, inspired from the Progressive Edge-Growth (PEG) method, which ensures maximum girth of th
3

Constellations finies et infinies de réseaux de points pour le canal AWGN / On infinite and finite lattice constellations for the additive white Gaussian Noise Channel

Di pietro, Nicola 31 January 2014 (has links)
On étudie le problème de la transmission de l'information à travers le canal AWGN en utilisant des réseaux. On commence par considérer des constellations infinies. Une nouvelle famille de réseaux obtenus par Construction A à partir de codes linéaires non binaires est proposée. Ces réseaux sont appelés LDA ("Low-Density Construction A") et sont caractérisés par des matrices de parité p-aires creuses, qui les mettent en relation directe avec les codes LPDC. Deux résultats sur leur possibilité d'atteindre la capacité de Poltyrev sont provés ; cela est d'abord démontré pour des poids des lignes logarithmiques des matrices de parité associées, puis pour des poids constants. Le deuxième résultat est basé sur certaines propriétés d'expansion des graphes de Tanner correspondants à ces matrices. Un autre sujet de ce travail concerne les constellations finies de réseaux. une nouvelle preuve est donnée du fait que des réseaux aléatoires obtenus par Construction A generale atteignent la capacité avec décodage de type "lattice decoding". Cela prolonge et améliore le travail de Erez et Zamir (2004), Ordentlich et Edrez (2012) Ling et Belfiore (2013). Cette preuve est basée sur les constellations de Coronoï et la multiplication par le coefficient de Wiener ("MMSE scaling") du siganl en sortie du canal. Finalement, ce résultat est adapté au cas des réseaux LDA, qui eux aussi atteignent la capacité avec le même procédé de transmission. Encore une fois, il est nécessaire d'exploiter les propriétés d'expansion des graphes de Tanner. A la fin de la dissertation, on présente un algorithme de décodage itératif et de type "message-passing" approprié au décodage des LDA en grandes dimensions. / The probleme of transmission of information over the AWGN channel using lattices is addressed. Firstly, infinite constellations are considered. A nex family of integer lattices built by means of construction A with non-binary linear condes is introduced. These lattices are called LPA (Low-Density Construction A) and are characterised by sparse p-ary parity-chedk matrices, that put them in direct relation with LPDC codes. Two results about the Poltyrev-capacity-archieving qualities of this family are proved, respectively for logarithmic row degree and constant row degree of the associated parity-check matrices. The second result is based on some expansion poperties of the Tanner graphs related to these matrices. Another topic of this work concerns finite lattice constellations. A new proff that heneral random Construction A lattices achieve capacity under lattice deconding is provided, continuing and pimproving the work of Erez and Zamir (2004), Ordentlich an Erez (2012), and Ling and Belfiore (2013). This proof is based on Voronoi lattice constellations and MMSE scaling of the channel output. Finally, this approach is adapted to the LDA case abd ut us scgiwn tgat LDA lattices achive capacity with the ame transmission scheme, too. Once again, it is necessary to exploit the expansion properties of the Tanner graphs. At he end of the dissertation, an iterative message-passing algorithm suitable for decoding LDA lattices in high dimensions is presented.
4

Techniques de coopération appliquées aux futurs réseaux cellulaires / Cooperation strategies for next generation cellular systems

Cardone, Martina 24 April 2015 (has links)
Une qualité de service uniforme pour les utilisateurs mobiles et une utilisation distribuée du spectre représentent les ingrédients clés des réseaux cellulaires de prochaine génération. Dans ce but, la coopération au niveau de la couche physique entre les nœuds de l’infrastructure et les nœuds du réseau sans fil a émergé comme une technique à fort potentiel. La coopération s’appuie sur les propriétés de diffusion du canal sans fil, c’est-à-dire que la même transmission peut être entendue par plusieurs nœuds, ouvrant ainsi la possibilité pour les nœuds de s’aider à transmettre les messages à leur destination finale. La coopération promet aussi d’offrir une façon nouvelle et intelligente de gérer les interférences, au lieu de simplement les ignorer et les traiter comme du bruit. Comprendre comment concevoir ces systèmes radio coopératifs, afin que les ressources disponibles soient pleinement utilisées, est d’une importance fondamentale. L’objectif de cette thèse est de mener une étude du point de vue de la théorie de l’information, pour des systèmes sans fil pertinents dans la pratique, où les nœuds de l’infrastructure coopèrent en essayant d’améliorer les performances du réseau. Les systèmes radio avec des relais semi-duplex ainsi que les scénarios où une station de base aide à servir les utilisateurs mobiles associés à une autre station de base, sont les réseaux sans fil coopératifs étudiés dans cette thèse. Le but principal est la progression vers la caractérisation de la capacité de ces systèmes sans fil au moyen de dérivation de nouvelles bornes supérieures pour les performances et la conception de nouvelles stratégies de transmission permettant de les atteindre. / A uniform mobile user quality of service and a distributed use of the spectrum represent the key-ingredients for next generation cellular networks. Toward this end, physical layer cooperation among the network infrastructure and the wireless nodes has emerged as a potential technique. Cooperation leverages the broadcast nature of the wireless medium, that is, the same transmission can be heard by multiple nodes, thus opening up the possibility that nodes help one another to convey the messages to their intended destination. Cooperation also promises to offer novel and smart ways to manage interference, instead of just simply disregarding it and treating it as noise. Understanding how to properly design such cooperative wireless systems so that the available resources are fully utilized is of fundamental importance.The objective of this thesis is to conduct an information theoretic study on practically relevant wireless systems where the network infrastructure nodes cooperate among themselves in an attempt to enhance the network performance in many critical aspects, such as throughput, robustness and coverage. Wireless systems with half-duplex relay stations as well as scenarios where a base station overhears another base station and consequently helps serving this other base station's associated mobile users, represent the wireless cooperative networks under investigation in this thesis. The prior focus is to make progress towards characterizing the capacity of such wireless systems by means of derivation of novel outer bounds and design of new provably optimal transmission strategies.

Page generated in 0.0399 seconds