• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 29
  • 29
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design techniques for graph-based error-correcting codes and their applications

Lan, Ching Fu 12 April 2006 (has links)
In Shannon’s seminal paper, “A Mathematical Theory of Communication”, he defined ”Channel Capacity” which predicted the ultimate performance that transmission systems can achieve and suggested that capacity is achievable by error-correcting (channel) coding. The main idea of error-correcting codes is to add redundancy to the information to be transmitted so that the receiver can explore the correlation between transmitted information and redundancy and correct or detect errors caused by channels afterward. The discovery of turbo codes and rediscovery of Low Density Parity Check codes (LDPC) have revived the research in channel coding with novel ideas and techniques on code concatenation, iterative decoding, graph-based construction and design based on density evolution. This dissertation focuses on the design aspect of graph-based channel codes such as LDPC and Irregular Repeat Accumulate (IRA) codes via density evolution, and use the technique (density evolution) to design IRA codes for scalable image/video communication and LDPC codes for distributed source coding, which can be considered as a channel coding problem. The first part of the dissertation includes design and analysis of rate-compatible IRA codes for scalable image transmission systems. This part presents the analysis with density evolution the effect of puncturing applied to IRA codes and the asymptotic analysis of the performance of the systems. In the second part of the dissertation, we consider designing source-optimized IRA codes. The idea is to take advantage of the capability of Unequal Error Protection (UEP) of IRA codes against errors because of their irregularities. In video and image transmission systems, the performance is measured by Peak Signal to Noise Ratio (PSNR). We propose an approach to design IRA codes optimized for such a criterion. In the third part of the dissertation, we investigate Slepian-Wolf coding problem using LDPC codes. The problems to be addressed include coding problem involving multiple sources and non-binary sources, and coding using multi-level codes and nonbinary codes.
2

Contributions à l'étude et à l'optimisation de systèmes à composantes itératives.

Poulliat, Charly 02 December 2010 (has links) (PDF)
Au cours des cinq dernières années, mes thèmes de recherche furent orientés autour des trois axes suivants : •la conception et l'optimisation asymptotique de récepteurs itératifs pour les communications numériques, comme par exemple l'analyse et l'optimisation des codes LDPC ou familles dérivées pour différents types de canaux, turbo-égalisation, décodage source-canal conjoint ; •la conception, le décodage et l'optimisation de codes définis sur les graphes pour les tailles finies, comme par exemple l'optimisation des codes LDPC non binaires à taille finie et certaines familles dérivées ou le décodage itératif non binaire de codes binaires ; •l'allocation de ressources, la conception et l'optimisation de systèmes à composantes itératives pour les canaux sans fil (par exemple système à retransmissions (HARQ) pour canaux sélectifs en fréquence, AMC pour l'ultra-large bande, protection inégale contre les erreurs et allocation de codes correcteurs).
3

Optimisation des stratégies de décodage des codes LDPC dans les environnements impulsifs : application aux réseaux de capteurs et ad hoc / LDPC strategy decoding optimization in impulsive environments : sensors and ad hoc networks application

Ben Maad, Hassen 29 June 2011 (has links)
L’objectif de cette thèse est d’étudier le comportement des codes LDPC dans un environnement où l’interférence générée par un réseau n’est pas de nature gaussienne mais présente un caractère impulsif. Un premier constat rapide montre que sans précaution, les performances de ces codes se dégradent très significativement. Nous étudions tout d’abord les différentes solutions possibles pour modéliser les bruits impulsifs. Dans le cas des interférences d’accès multiples qui apparaissent dans les réseaux ad hoc et les réseaux de capteurs, il nous semble approprié de choisir les distributions alpha-stables. Généralisation de la gaussienne, stables par convolution, elles peuvent être validées théoriquement dans plusieurs situations.Nous déterminons alors la capacité de l’environnement α-stable et montrons par une approche asymptotique que les codes LDPC dans cet environnement sont bons mais qu’une simple opération linéaire à l’entrée du décodeur ne permet pas d’obtenir de bonnes performances. Nous avons donc proposé différentes façons de calculer la vraisemblance en entrée du décodeur. L’approche optimale est très complexe à mettre en oeuvre. Nous avons étudié plusieurs approches différentes et en particulier le clipping dont nous avons cherché les paramètres optimaux. / The goal of this PhD is to study the performance of LDPC codes in an environment where interference, generated by the network, has not a Gaussian nature but presents an impulsive behavior.A rapid study shows that, if we do not take care, the codes’ performance significantly degrades.In a first step, we study different approaches for impulsive noise modeling. In the case of multiple access interference that disturb communications in ad hoc or sensor networks, the choice of alpha-stable distributions is appropriate. They generalize Gaussian distributions, are stable by convolution and can be theoretically justified in several contexts.We then determine the capacity if the α-stable environment and show using an asymptotic method that LDPC codes in such an environment are efficient but that a simple linear operation on the received samples at the decoder input does not allow to obtain the expected good performance. Consequently we propose several methods to obtain the likelihood ratio necessary at the decoder input. The optimal solution is highly complex to implement. We have studied several other approaches and especially the clipping for which we proposed several approaches to determine the optimal parameters.
4

Turbo égalisation à haute performance pour la transmission par satellite au-delà de la cadence de Nyquist / High performance turbo equalisation for faster-than-Nyquist satellite communications

Abelló Barberán, Albert 15 November 2018 (has links)
Le contexte de ces travaux de thèse est la transmission dite faster-than-Nyquist (FTN). Cette technique propose d’augmenter l’efficacité spectrale en augmentant lerythme de transmission au-delà de la bande occupée par le signal émis, indépendamment de laconstellation choisie. Il a été montré que le FTN offre des taux d’information supérieurs à ceuxdes systèmes de Nyquist. Toutefois, le non respect du critère de Nyquist entraîne l’apparitiond’interférence entre symboles et des techniques de réception appropriées doivent être utilisées.La technique de réception dite channel shortening consiste à filtrer la séquence reçue puis àcalculer des probabilités symbole a posteriori approximatives à l’aide de l’algorithme BCJRen considérant une réponse de canal modifiée, de longueur réduite. Dans la littérature, enprésence d’information a priori, les filtres du récepteur channel shortening sont optimiséssous critère de maximisation de l’information mutuelle généralisée (IMG) en utilisant desméthodes numériques. Nous proposons dans ces travaux de thèse une solution analytiquepour l’ensemble des filtres channel shortening sous critère de maximisation de l’IMG lorsquele récepteur dispose d’information a priori. Nous démontrons ensuite que l’égaliseur au sens dela minimisation de l’erreur quadratique moyenne (MMSE) est un cas particulier de l’égaliseurchannel shortening. Dans le cadre de la turbo égalisation, nous étudions ensuite un estimateurpermettant d’obtenir l’information a priori à partir de l’information en sortie du décodeurcorrecteur d’erreurs. Finalement, nous évaluons les performances du système complet aveccodage correcteur d’erreurs sur canal à bruit additif blanc Gaussien. / In order to increase the spectral efficiency of digital communications systems,the faster-than-Nyquist (FTN) approach increases the symbol rate beyond the occupied bandwidthof the transmitted signal independently of the constellation type and size. It has beenshown that information rates of FTN systems are greater than those of Nyquist systems.However, the non-compliance of the Nyquist criterion causes inter-symbol interference to appearand therefore appropriate reception techniques must be used. At reception, the channelshortening approach consists on a receiving filter followed by a BCJR algorithm computingapproximate a posteriori symbol probabilities by considering a modified channel response ofreduced length. In the literature, the channel shortening receiving filters are chosen to maximizethe generalized mutual information (GMI). Such optimization is performed by usingnumerical optimization methods. In this PhD thesis, we propose a closed-form solution forall channel shortening filters considering the GMI maximization criterion. We show that theminimum mean square error (MMSE) equalizer is a particular case of the channel shorteningapproach. Within the frame of turbo equalization, we then study a suitable estimator allowingto obtain symbols a priori information from the information provided by the a decoder. Finally,we study the performance of the complete system with channel coding over an additivewhite Gaussian noise channel.
5

Algorithme de réconciliation et méthodes de distribution quantique de clés adaptées au domaine fréquentiel

Bloch, M. 11 December 2006 (has links) (PDF)
Longtemps considérée comme une curiosité de laboratoire, la distribution quantique de clés s'est aujourd'hui imposée comme une solution viable de sécurisation des données. Les lois fondamentales de la physique quantique permettent en effet de garantir la sécurité inconditionnelle des clés secrètes distribuées. Nous avons proposé un système de distribution quantique de clés par photons uniques exploitant un véritable codage en fréquence de l'information. Cette nouvelle méthode de codage permet de s'affranchir de dispositifs interférométriques et offre donc une grande robustesse. Un démonstrateur basé sur des composants optiques intégrés standard a été réalisé et a permis de valider expérimentalement le principe de codage. Nous avons ensuite étudié un système mettant en ?uvre un protocole de cryptographie quantique par « variables continues », codant l'information sur l'amplitude et la phase d'états cohérents. Le dispositif proposé est basé sur un multiplexage fréquentiel du signal porteur d'information et d'un oscillateur local. Les débits atteints par les systèmes de distribution de clés ne sont pas uniquement limités par des contraintes technologiques, mais aussi par l'efficacité des protocoles de réconciliation utilisés. Nous avons proposé un algorithme de réconciliation de variables continues efficace, basé sur des codes LDPC et permettant d'envisager de réelles distributions de clés à haut débit avec les protocoles à variables continues.
6

Décodeurs LDPC à faible consommation énergétique

Amador, Erick 31 March 2011 (has links) (PDF)
Les techniques de décodage itératif pour les codes modernes dominent actuellement le choix pour la correction des erreurs dans un grand nombre d'applications. Les Turbo codes, présentés en 1993, ont déclenché une révolution dans le domaine du codage de canal parce que ils permettent de s'approcher de la limite de Shannon. Ensuite, les codes LDPC (low-density parity-check) ont été redécouverts. Ces codes sont actuellement omniprésents dans le contexte des communications mobiles sans fil, mais aussi dans d'autres domaines d'application. Dans cette thèse, l'accent est mis sur la conception de décodeurs VLSI à basse consommation destinés aux communications sans fil. Les dispositifs nomades sont généralement alimentés par des batteries et ils ont besoin d'une bonne efficacité énergétique et d'une haute performance, le tout dans une surface de silicium minimale. En outre, les décodeurs de canal sont généralement responsables d'une part importante de la consommation d'énergie dans la chaîne de traitement en bande de base d'un récepteur sans fil. Nous nous concentrons sur les décodeurs LDPC. Au niveau algorithmique nous étudions les compromis entre la performance, l'efficacité énergétique et la surface de silicium pour les différents algorithmes de décodage. Au niveau de l'architecture nous étudions le point essentiel des mémoires. Ce point est particulièrement important pour la consommation et la surface finale du décodeur. Enfin, au niveau du système, nous proposons des stratégies pour la gestion dynamique de la puissance pour les décodeurs Turbo et LDPC. Ces stratégies sont basées sur la prédiction et le contrôle dynamique du nombre d'itérations de décodage.
7

Décodeurs Haute Performance et Faible Complexité pour les codes LDPC Binaires et Non-Binaires

Li, Erbao 19 December 2012 (has links) (PDF)
Cette thèse se consacre à l'étude de décodeurs itératifs, pour des codes correcteurd'erreurs binaires et non-binaires à faible densité (LDPC). Notre objectif est de modéliserdes décodeurs de complexité faibles et de faible latence tout en garantissantde bonne performances dans la région des très faibles taux d'erreur (error floor).Dans la première partie de cette thèse, nous étudions des décodeurs itératifssur des alphabets finis (Finite Alphabet iterative decoders, FAIDs) qui ont étérécemment proposés dans la littérature. En utilisant un grand nombre de décodeursFAIDs, nous proposons un nouvel algorithme de décodage qui améliore la capacité decorrections d'erreur des codes LDPC de degré dv = 3 sur canal binaire symétrique.La diversité des décodeurs permet de garantir une correction d'erreur minimale sousdécodage itératif, au-delà de la pseudo-distance des codes LDPC. Nous donnonsdans cette thèse un exemple detailé d'un ensemble de décodeur FAIDs, qui corrigetous les évènements d'erreur de poids inférieur ou égal à 7 avec un LDPC de petitetaille (N=155,K=64,Dmin=20). Cette approche permet de corriger des évènementsd'erreur que les décodeurs traditionnels (BP, min-sum) ne parviennent pas à corriger.Enfin, nous interprétons les décodeurs FAIDs comme des systèmes dynamiques etnous analysons les comportements de ces décodeurs sur des évènements d'erreur lesplus problématiques. En nous basant sur l'observation des trajectoires périodiquespour ces cas d'étude, nous proposons un algorithme qui combine la diversité dudécodage avec des sauts aléatoires dans l'espace d'état du décodeur itératif. Nousmontrons par simulations que cette technique permet de s'approcher des performancesd'un décodage optimal au sens du maximum de vraisemblance, et ce pourplusieurs codes.Dans la deuxième partie de cette thèse, nous proposons un nouvel algorithmede décodage à complexité réduite pour les codes LDPC non-binaires. Nous avonsappellé cet algorithme Trellis-Extended Min-Sum (T-EMS). En transformant le domainede message en un domaine appelée domaine delta, nous sommes capable dechoisir les déviations ligne par ligne par rapport à la configuration la plus fiable,tandis que les décodeurs habituels comme le décodeur EMS choisissent les déviationscolonne par colonne. Cette technique de sélection des déviations ligne parligne nous permet de réduire la complexité du décodage sans perte de performancepar rapport aux approches du type EMS. Nous proposons également d'ajouter une colonne supplémentaire à la représentation en treillis des messages, ce qui résoudle problème de latence des décodeurs existants. La colonne supplémentaire permetde calculer tous les messages extrinséque en parallèle, avec une implémentationmatérielle dédiée. Nous présentons dans ce manuscrit, aussi bien les architecturesmatérielles parallèle que les architectures matérielles série pour l'exécution de notrealgorithme T-EMS. L'analyse de la complexité montre que l'approche T-EMS estparticulièrement adapté pour les codes LDPC non-binaires sur des corps finis deGalois de petite et moyenne dimensions.
8

Algorithmes itératifs à faible complexité pour le codage de canal et le compressed sensing

Danjean, Ludovic 29 November 2012 (has links) (PDF)
L'utilisation d'algorithmes itératifs est aujourd'hui largement répandue dans tous les domaines du traitement du signal et des communications numériques. Dans les systèmes de communications modernes, les algorithmes itératifs sont utilisés dans le décodage des codes ''low-density parity-check'' (LDPC), qui sont une classe de codes correcteurs d'erreurs utilisés pour leurs performances exceptionnelles en terme de taux d'erreur. Dans un domaine plus récent qu'est le ''compressed sensing'', les algorithmes itératifs sont utilisés comme méthode de reconstruction afin de recouvrer un signal ''sparse'' à partir d'un ensemble d'équations linéaires, appelées observations. Cette thèse traite principalement du développement d'algorithmes itératifs à faible complexité pour les deux domaines mentionnés précédemment, à savoir le design d'algorithmes de décodage à faible complexité pour les codes LDPC, et le développement et l'analyse d'un algorithme de reconstruction à faible complexité, appelé ''Interval-Passing Algorithm (IPA)'', dans le cadre du ''compressed sensing''.Dans la première partie de cette thèse, nous traitons le cas des algorithmes de décodage des codes LDPC. Il est maintenu bien connu que les codes LDPC présentent un phénomène dit de ''plancher d'erreur'' en raison des échecs de décodage des algorithmes de décodage traditionnels du types propagation de croyances, et ce en dépit de leurs excellentes performances de décodage. Récemment, une nouvelle classe de décodeurs à faible complexité, appelés ''finite alphabet iterative decoders (FAIDs)'' ayant de meilleures performances dans la zone de plancher d'erreur, a été proposée. Dans ce manuscrit nous nous concentrons sur le problème de la sélection de bons décodeurs FAID pour le cas de codes LDPC ayant un poids colonne de 3 et le cas du canal binaire symétrique. Les méthodes traditionnelles pour la sélection des décodeurs s'appuient sur des techniques asymptotiques telles que l'évolution de densité, mais qui ne garantit en rien de bonnes performances sur un code de longueurs finies surtout dans la région de plancher d'erreur. C'est pourquoi nous proposons ici une méthode de sélection qui se base sur la connaissance des topologies néfastes au décodage pouvant être présente dans un code en utilisant le concept de ''trapping sets bruités''. Des résultats de simulation sur différents codes montrent que les décodeurs FAID sélectionnés grâce à cette méthode présentent de meilleures performance dans la zone de plancher d'erreur comparé au décodeur à propagation de croyances.Dans un second temps, nous traitons le sujet des algorithmes de reconstruction itératifs pour le compressed sensing. Des algorithmes itératifs ont été proposés pour ce domaine afin de réduire la complexité induite de la reconstruction par ''linear programming''. Dans cette thèse nous avons modifié et analysé un algorithme de reconstruction à faible complexité dénommé IPA utilisant les matrices creuses comme matrices de mesures. Parallèlement aux travaux réalisés dans la littérature dans la théorie du codage, nous analysons les échecs de reconstruction de l'IPA et établissons le lien entre les ''stopping sets'' de la représentation binaire des matrices de mesure creuses. Les performances de l'IPA en font un bon compromis entre la complexité de la reconstruction sous contrainte de minimisation de la norme $ell_1$ et le très simple algorithme dit de vérification.
9

Analyse et construction de codes LDPC non-binaires pour des canaux à évanouissement

Gorgoglione, Matteo 25 October 2012 (has links) (PDF)
Au cours des 15 dernières années, des progrès spectaculaires dans l'analyse et la conception des codes définis par des graphes bipartites et dé-codables par des algorithmes itératifs ont permis le développement de systèmes de correction d'erreurs, avec des performances de plus en plus proches la limite théorique de Shannon. Dans ce contexte, un rôle déterminant a été joué par la famille des codes à matrice de parité creuse, appelés codes LDPC (pour " Low-Density Parity-Check ", en anglais), introduit par Gallager au début des années 60 et décrits plus tard en termes de graphes bipartites. Négligés pendant de longues années, ces codes ont été redécouverts à la fin des années 90, après que la puissance du décodage itératif a été mise en évidence grâce à l'invention des Turbo-codes. Ce n'est qu'au début des années 2000 que les techniques nécessaires à l'analyse et l'optimisation des codes LDPC ont été développées, techniques qui ont permis ensuite la construction des codes avec des performances asymptotiques proches de la limite de Shannon. Cette remarquable avancée a motivé l'intérêt croissant de la communauté scientifique et soutenu le transfert rapide de cette technologie vers le secteur industriel. Plus récemment, un intérêt tout particulier a été porté aux codes LDPC définis sur des alphabets non-binaires, grâce notamment à leur meilleure capacité de correction en " longueur finie ". Bien que Gallager ait déjà proposé l'utilisation des alphabets non-binaires, en utilisant l'arithmétique modulaire, les codes LDPC non-binaires définis sur les corps finis n'ont étés étudiés qu'à partir de la fin des années 90. Il a été montré que ces codes offrent de meilleures performances que leurs équivalents binaires lorsque le bloc codé est de longueur faible à modérée, ou lorsque les symboles transmis sur le canal sont eux-mêmes des symboles non-binaires, comme par exemple dans le cas des modulations d'ordre supérieur ou des canaux à antennes multiples.Cependant, ce gain en performance implique un coût non négligeable en termes de complexité de décodage, quipeut entraver l'utilisation des codes LDPC non binaires dans des systèmes réels, surtout lorsque le prix à payer encomplexité est plus important que le gain en performance.Cette thèse traite de l'analyse et de la conception des codes LDPC non binaires pour des canaux à évanouissements. L'objectif principal de la thèse est de démontrer que, outre le gain en performance en termes de capacité de correction, l'emploi des codes LDPC non binaires peut apporter des bénéfices supplémentaires,qui peuvent compenser l'augmentation de la complexité du décodeur. La " flexibilité " et la " diversité "représentent les deux bénéfices qui seront démontrées dans cette thèse. La " flexibilité " est la capacité d'unsystème de codage de pouvoir s'adapter à des débits (rendements) variables tout en utilisant le même encodeuret le même décodeur. La " diversité " se rapporte à sa capacité d'exploiter pleinement l'hétérogénéité du canal de communication.La première contribution de cette thèse consiste à développer une méthode d'approximation de l'évolution de densité des codes LDPC non-binaires, basée sur la simulation Monte-Carlo d'un code " infini ". Nous montrons que la méthode proposée fournit des estimations très fines des performances asymptotiques des codes LDPCnon-binaires et rend possible l'optimisation de ces codes pour une large gamme d'applications et de modèles de canaux.La deuxième contribution de la thèse porte sur l'analyse et la conception de système de codage flexible,utilisant des techniques de poinçonnage. Nous montrons que les codes LDPC non binaires sont plus robustes au poinçonnage que les codes binaires, grâce au fait que les symboles non-binaires peuvent être partialement poinçonnés. Pour les codes réguliers, nous montrons que le poinçonnage des codes non-binaires obéit à des règles différentes, selon que l'on poinçonne des symboles de
10

Analyse et construction de codes LDPC non-binaires pour des canaux à evanouissement / Analysis and Design of Non-Binary LDPC Codes over Fading Channels

Gorgoglione, Matteo 25 October 2012 (has links)
Au cours des 15 dernières années, des progrès spectaculaires dans l'analyse et la conception des codes définis par des graphes bipartites et dé-codables par des algorithmes itératifs ont permis le développement de systèmes de correction d'erreurs, avec des performances de plus en plus proches la limite théorique de Shannon. Dans ce contexte, un rôle déterminant a été joué par la famille des codes à matrice de parité creuse, appelés codes LDPC (pour « Low-Density Parity-Check », en anglais), introduit par Gallager au début des années 60 et décrits plus tard en termes de graphes bipartites. Négligés pendant de longues années, ces codes ont été redécouverts à la fin des années 90, après que la puissance du décodage itératif a été mise en évidence grâce à l'invention des Turbo-codes. Ce n'est qu'au début des années 2000 que les techniques nécessaires à l'analyse et l'optimisation des codes LDPC ont été développées, techniques qui ont permis ensuite la construction des codes avec des performances asymptotiques proches de la limite de Shannon. Cette remarquable avancée a motivé l'intérêt croissant de la communauté scientifique et soutenu le transfert rapide de cette technologie vers le secteur industriel. Plus récemment, un intérêt tout particulier a été porté aux codes LDPC définis sur des alphabets non-binaires, grâce notamment à leur meilleure capacité de correction en « longueur finie ». Bien que Gallager ait déjà proposé l'utilisation des alphabets non-binaires, en utilisant l'arithmétique modulaire, les codes LDPC non-binaires définis sur les corps finis n'ont étés étudiés qu'à partir de la fin des années 90. Il a été montré que ces codes offrent de meilleures performances que leurs équivalents binaires lorsque le bloc codé est de longueur faible à modérée, ou lorsque les symboles transmis sur le canal sont eux-mêmes des symboles non-binaires, comme par exemple dans le cas des modulations d'ordre supérieur ou des canaux à antennes multiples.Cependant, ce gain en performance implique un coût non négligeable en termes de complexité de décodage, quipeut entraver l'utilisation des codes LDPC non binaires dans des systèmes réels, surtout lorsque le prix à payer encomplexité est plus important que le gain en performance.Cette thèse traite de l'analyse et de la conception des codes LDPC non binaires pour des canaux à évanouissements. L'objectif principal de la thèse est de démontrer que, outre le gain en performance en termes de capacité de correction, l'emploi des codes LDPC non binaires peut apporter des bénéfices supplémentaires,qui peuvent compenser l'augmentation de la complexité du décodeur. La « flexibilité » et la « diversité »représentent les deux bénéfices qui seront démontrées dans cette thèse. La « flexibilité » est la capacité d'unsystème de codage de pouvoir s'adapter à des débits (rendements) variables tout en utilisant le même encodeuret le même décodeur. La « diversité » se rapporte à sa capacité d'exploiter pleinement l'hétérogénéité du canal de communication.La première contribution de cette thèse consiste à développer une méthode d'approximation de l'évolution de densité des codes LDPC non-binaires, basée sur la simulation Monte-Carlo d'un code « infini ». Nous montrons que la méthode proposée fournit des estimations très fines des performances asymptotiques des codes LDPCnon-binaires et rend possible l'optimisation de ces codes pour une large gamme d'applications et de modèles de canaux.La deuxième contribution de la thèse porte sur l'analyse et la conception de système de codage flexible,utilisant des techniques de poinçonnage. Nous montrons que les codes LDPC non binaires sont plus robustes au poinçonnage que les codes binaires, grâce au fait que les symboles non-binaires peuvent être partialement poinçonnés. Pour les codes réguliers, nous montrons que le poinçonnage des codes non-binaires obéit à des règles différentes, selon que l'on poinçonne des symboles de / Over the last 15 years, spectacular advances in the analysis and design of graph-basedcodes and iterative decoding techniques paved the way for the development of error correctionsystems operating very close to the theoretical Shannon limit. A prominent rolehas been played by the class of Low Density Parity Check (LDPC) codes, introduced inthe early 60's by Gallager's and described latter in terms of sparse bipartite graphs. In theearly 2000's, LDPC codes were shown to be capacity approaching codes for a wide rangeof channel models, which motivated the increased interest of the scientific community andsupported the rapid transfer of this technology to the industrial sector. Over the past fewyears there has been an increased interest in non-binary LDPC codes due to their enhancedcorrection capacity. Although Gallager already proposed in his seminal work the use ofnon-binary alphabets (by using modular arithmetic), non-binary LDPC codes defined overfinite fields have only been investigated starting with the late 90's. They have been provento provide better performance than their binary counterparts when the block-length issmall to moderate, or when the symbols sent through channel are not binary, which is thecase for high-order modulations or for multiple-antennas channels. However, the performancegain comes at a non-negligible cost in the decoding complexity, which may prohibitthe use of non-binary LDPC codes in practical systems, especially when the price to payin decoding complexity is too high for the performance gain that one can get.This thesis addresses the analysis and design of non-binary LDPC codes for fadingchannels. The main goal is to demonstrate that besides the gain in the decoding performance,the use of non-binary LDPC codes can bring additional benefits that may offsetthe extra cost in decoding complexity. Flexibility and diversity are the two benefitsthat we demonstrate in this thesis. The exibility is the capacity of a coding system toaccommodate multiple coding rates through the use of a unique encoder/decoder pair. Thediversity of a coding system relates to its capacity to fully exploit the communicationchannel's heterogeneity.The first contribution of the thesis is the development of a Density Evolution approximationmethod, based on the Monte-Carlo simulation of an infinite code. We showthat the proposed method provides accurate and precise estimates of non-binary ensemblethresholds, and makes possible the optimization of non-binary codes for a wide range ofapplications and channel models.The second contribution of the thesis consists of the analysis and design of flexiblecoding schemes through the use of puncturing. We show that the non-binary LDPCcodes are more robust to puncturing than their binary counterparts, thanks to the factthat non-binary symbol-nodes can be only partially punctured. For regular codes, we showthat the design of puncturing patterns must respect different rules depending on whetherthe symbol-nodes are of degree 2 or higher. For irregular codes we propose an optimizationprocedure and we present optimized puncturing distributions for non-binary LDPC codes,iiiwhich exhibit a gap to capacity between 0.2 and 0.5dB , for punctured rates varying from0.5 to 0.9.The third contribution investigates the non-binary LDPC codes transmitted over aRayleigh (fast) fading channel, in which different modulated symbols are affected by differentfading factors. In case of one-to-one correspondence between modulated and codedsymbols, deep fading can make some coded symbols totally unrecoverable, leading to apoor system performance. In order to avoid this phenomenon, binary diversity can beexploited by using a bit-interleaver module placed between the encoder and the modulator.We propose an optimized interleaving algorithm, inspired from the Progressive Edge-Growth (PEG) method, which ensures maximum girth of th

Page generated in 0.0421 seconds