Spelling suggestions: "subject:"capillary:fiber boiling"" "subject:"capillaryeffect boiling""
1 |
Boiling in Capillary-Fed Porous Evaporators Subject to High Heat FluxesSrivathsan Sudhakar (11171943) 23 July 2021 (has links)
<div>Thermal management in next generation power electronic devices, radar applications and semiconductor packaging architectures is becoming increasingly challenging due to the need to reject localized high heat fluxes as well as large total powers. Air cooling has been considered as a simple and reliable method for thermal management compared to architectures that incorporate liquid cooling. However, air-cooled heat sinks typically require effective heat spreading to provide the requisite level of area enhancement to dissipate high heat fluxes. Compared to solid metallic heat spreaders, advanced heat sinks that incorporate two-phase heat transfer devices such as vapor chambers can significantly enhance the power dissipation capabilities in such configurations. Vapor chambers are devices that utilize evaporation/boiling processes within a sealed cavity to achieve efficient heat spreading. In high-heat-flux applications, boiling can occur within the internal wick structure of the vapor chamber at the location of the heat input (i.e., the evaporator). The maximum dryout heat flux and thermal resistance of the device is dictated by the resulting two-phase flow and heat transfer in the porous evaporator due to boiling. While various works in the literature have introduced new evaporator wick designs to improve the dryout heat flux during boiling, the enhancement is limited to small, millimeter scale hotspots or at a very high thermal resistance. In additixon, the effective design of such evaporator systems requires mechanistic models that can accurately predict the dryout limit and thermal performance. </div><div> This thesis first explores the usage of a novel ‘two-layer’ evaporator wick for passive high heat flux dissipation over large heater areas at a low thermal resistance. Moreover, a new mechanistic (first principles based) model framework is introduced for dryout limit and thermal performance prediction during boiling in capillary fed evaporators, by considering the resulting simultaneous flow of two phases (liquid and vapor) within the microscale porous media.</div><div> The novel two-layer wick concept uses a thick ‘cap’ layer of porous material to feed liquid to a thin ‘base’ layer through an array of vertical liquid-feeding ‘posts’. Vapor ‘vents’ in the cap layer allow for vapor formed during the boiling process (which is constrained to the base layer) to escape out of the wick. This two-layer structure decouples the functions of liquid resupply and capillary-fed boiling heat transfer, making the design realize high heat flux dissipation greater than 500 W/cm2 over large heat input areas of ~1 cm2. A reduced-order model is first developed to demonstrate the performance of a vapor chamber incorporating such a two-layer evaporator wick design. The model comprises simplified hydraulic and thermal resistance networks for predicting the capillary-limited maximum heat flux and the overall thermal resistance, respectively. The reduced-order model is validated against a higher fidelity numerical model and then used to analyze the performance of the vapor chamber with varying two-layer wick geometric feature sizes. The fabrication of the proposed two-layer wick is then presented. The thermal performance of the fabricated wicks is characterized using a boiling test facility that utilizes high speed visualization to identify the characteristic regimes of boiling operation in the wicks. The performance is also benchmarked to conventional single-layer wicks. </div><div> It is observed that single-layer wicks exhibit an unfavorable boiling regime where the center of the heater area dries out locally, leading to a high value of thermal resistance. The two-layer wicks avoid local dryout due to the distributed feeding provided by the posts and enhance the dryout heat flux significantly compared to single-layer wicks. A two-layer design that consists of a 10 × 10 array of liquid feeding posts provided a 400% improvement in the dryout heat flux. Following a parametric analysis of the effect of particle size, two-layer wicks composed of 180 – 212 µm particles and a 15 × 15 array of liquid feeding posts yielded a maximum heat flux dissipation of 485 W/cm2 over a 1 cm2 heat input area while also maintaining a low thermal resistance of only ~0.052 K/W. The effect of vapor venting and liquid-feeding areas is also experimentally studied. By understanding these effects, a parametrically optimized design is fabricated and shown to demonstrate an extremely high dryout limit of 512 W/cm2. We identify that the unique area-scalability of the two-layer wick design allows it to achieve an unprecedented combination of high total power and low-thermal-resistance heat dissipation over larger areas than was previously possible in the literature.</div><div> The results from the characterization of two-layer wicks revealed that the overall performance of the design was limited by the boiling process in the thin base wick layer. A fundamental model-based understanding of the resulting two-phase flow and heat transfer process in such thin capillary-fed porous media was still lacking. This lack of a mechanistic model precluded the accurate prediction of dryout heat flux and thermal performance of the two-layer wick. Moreover, such an understanding is needed for the optimal design of advanced hybrid evaporator wicks that leverage capillary-fed boiling. Despite the existence of various experimental works, there are currently no mechanistic approaches that model this behavior. To fill this unmet need, this thesis presents a new semi-empirical model for prediction of dryout and thermal resistance of capillary-fed evaporator systems. Thermal conduction across the solid and volumetric evaporation within the pores are solved to obtain the temperature distribution in the porous structure. Capillary-driven lateral liquid flow from the outer periphery of the evaporator to its center, with vapor flow across the thickness, is considered to obtain the local liquid and vapor pressures. Experiments are conducted on sintered copper particle evaporators of different particle sizes and heater areas to collect data for model calibration. To demonstrate the wider applicability of the model for other types of porous evaporators, the model is further calibrated against a variety of dryout limit and thermal resistance data collected from the literature. The model is shown to predict the experimentally observed trends in the dryout limit with mean particle/pore size, heater size, and evaporator thicknesses. This physics–based modeling approach is then implemented into a vapor chamber model to predict the thermal performance limits of air-cooled heat sinks with embedded vapor chambers. The governing energy and momentum equations of a low-cost analytical vapor chamber modeling approach is coupled with the evaporator model to capture the effect of boiling in the evaporator wick. An example case study illustrating the usage of the model is demonstrated and compared to a purely evaporation-based modeling approach, for quantifying the differences in dryout limit prediction, signifying the need to account for boiling in the evaporator wick. </div><div> The understanding gained from this thesis can be utilized for the prediction of dryout and thermal performance during boiling in capillary limited evaporator systems. The work also suggests the usage of a universal relative permeability correlation for the two-phase flow configuration studied herein for capillary-fed boiling, based on a wide calibration to experimental data. The modeling framework can also be readily leveraged to find novel and unexplored designs of advanced evaporator wicks. From an application standpoint, the new vapor chamber model developed here can be used for the improved estimation of performance limits specifically when high heat fluxes are encountered by the device. This will enable better and informed design of air-cooled heat sink architectures with embedded vapor chambers for high performance applications. </div><div><br></div>
|
2 |
A Pump-Assisted Capillary Loop Evaporator Design for High Heat-Flux DissipationSilvia Anali Soto de la Torre (11433022) 29 October 2021 (has links)
Passive two-phase cooling devices such as capillary pump loops, loop heat pipes, and vapor chambers can utilize capillary-fed boiling in the porous evaporator wick to achieve high heat flux dissipation, while maintaining low thermal resistances. These systems typically rely only on passive capillary pumping through the porous wick to transport fluid. This inevitably leads to limits on the maximum heat flux and power dissipation based on the maximum capillary pressure available. To overcome these capillary pumping limitations in these passive devices, a mechanical pump can be added to the system to create a pump-assisted capillary loop (PACL). The pump can actively transport the fluid to overcome the pressure drop in liquid lines, reserving all of the available capillary action to draw liquid from a compensation chamber into the porous evaporator at the location of the heat input.<br>Previous studies on pump-assisted capillary loops have used a porous pathway to draw liquid to the heated evaporator surface from a liquid supply in the compensation chamber. This pathway typically comprises porous posts distributed over the heated surface area to ensure uniform liquid feeding during boiling and to avoid dryout regions. This thesis presents an evaporator design for a pump-assisted capillary loop system featuring a non-porous manifold connection between the compensation chamber and the evaporator wick base where boiling occurs. By using this approach, microscale liquid-feeding features can be implemented without the manufacturing restrictions associated with the use of porous wick pathways (such as sintered powder copper particles).<br>An analytical model for two-phase pressure drop prediction in the base wick is developed and used to define the evaporator geometry and feeding structure dimensions. A parametric analysis of the evaporator geometry is performed with the target of achieving a maximum heat dissipation of 1 kW/cm2 without a capillary limit. A 24 x 24 microtube array configuration with an outside tube diameter of 0.25 mm was identified as a result of this analysis. This manifold delivers liquid the base wick manufactured from sintered copper particles with a mean particle diameter of 90 microns. <br>The resulting evaporator geometry was translated into a manufacturable copper manifold design. A modular test section design consisting of a cover for attachment of fittings, a support structure for holding the manifold, a sintered copper wick base, and a carrier plate was created and manufactured, to accommodate for future testing scheduled to be performed by an external industry partner. The resulting design provides a testing vehicle to investigate the effect of different tubing arrangements and dimensions, as well as multiple base wick configurations. This knowledge can be used to engineer future evaporator architectures for enhanced performance. The improved understanding providing on the effect of liquid feeding distribution into the base wick, the effects of boiling on the base wick pressure drop, and the manufacturing limitations can each improve the performance prediction of evaporators with top feeding.
<br>
|
Page generated in 0.0575 seconds